
telegraf-kafka Documentation
Release 1

Guilhem Marchand

Aug 29, 2021

Overview

1 Overview: 3
1.1 About . 3
1.2 Compatibility . 5
1.3 Known Issues . 5
1.4 Support & donate . 5
1.5 Download . 6

2 Deployment and configuration: 7
2.1 Deployment & Upgrades . 7
2.2 Implementation & data collection . 8
2.3 Docker testing templates . 45
2.4 Splunk dashboards (health views) . 48
2.5 Splunk Connected experience for Cloud Gateway . 71
2.6 Kafka infrastructure OOTB alerting . 76

3 Troubleshoot: 103
3.1 Troubleshoot & FAQ . 103

4 Versioniong and build history: 105
4.1 Release notes . 105

i

ii

telegraf-kafka Documentation, Release 1

The Splunk application for Kafka Smart Monitoring with provides performance management, reporting and
alerting for Kafka components metrics ingested in the Splunk metric store:

Overview 1

telegraf-kafka Documentation, Release 1

The application provides builtin and native monitoring for Apache Kafka components, as well as the Confluent
stack components:

• Zookeeper

• Apache Kafka Brokers

• Apache Kafka Connect

• Confluent schema-registry

• Confluent ksql-server

• Confluent kafka-rest

• Kafka SLA and end to end monitoring with the LinkedIn Kafka monitor

• Confluent Interceptors monitoring for lag monitoring of consumers and producers

• Kafka Consumers lag monitoring with Burrow (Kafka Connect connectors, Kafka Streams. . .)

Fully multi-tenant compatible, the application can manage different environments, data-centers, etc specially
using tags at metrics low level.

It is recommended to read the unified guide for Kafka and Confluent monitoring first:

https://splunk-guide-for-kafka-monitoring.readthedocs.io

2 Overview

https://splunk-guide-for-kafka-monitoring.readthedocs.io

CHAPTER 1

Overview:

1.1 About

• Author: Guilhem Marchand

• First release published in October 2018

• Purposes:

The Splunk application for Kafka Smart Monitoring leverages the best components to provide a key layer
monitoring for your Kafka infrastructure :

• Telegraf from Influxdata (https://github.com/influxdata/telegraf)

• Jolokia for the remote JMX collection over http (https://jolokia.org)

• Telegraf Jolokia2 input plugin (https://github.com/influxdata/telegraf/tree/master/plugins/inputs/jolokia2)

• Telegraf Zookeeper input plugin (https://github.com/influxdata/telegraf/tree/master/plugins/inputs/zookeeper)

• Optional: Xinfra Kafka monitor to provide end to end monitoring (https://github.com/linkedin/kafka-monitor)

• Optional: Confluent Interceptors Monitoring (https://docs.confluent.io/current/control-center/installation/
clients.html)

• Optional: Kafka Consumers lag monitoring with Burrow (https://github.com/linkedin/Burrow)

An ITSI module is also available: https://da-itsi-telegraf-kafka.readthedocs.io

3

https://github.com/influxdata/telegraf
https://jolokia.org
https://github.com/influxdata/telegraf/tree/master/plugins/inputs/jolokia2
https://github.com/influxdata/telegraf/tree/master/plugins/inputs/zookeeper
https://github.com/linkedin/kafka-monitor
https://docs.confluent.io/current/control-center/installation/clients.html
https://docs.confluent.io/current/control-center/installation/clients.html
https://github.com/linkedin/Burrow
https://da-itsi-telegraf-kafka.readthedocs.io

telegraf-kafka Documentation, Release 1

4 Chapter 1. Overview:

telegraf-kafka Documentation, Release 1

1.2 Compatibility

1.2.1 Splunk compatibility

Splunk core version

• metrics are ingested into the high performance Splunk metric store, Splunk 7.0.x or later is required

• some queries are built using the latest syntax for metrics, Splunk 7.2.x or later is recommended

1.2.2 Telegraf compatibility

Telegraf supports various operating systems and process architectures including any version of Linux and Windows.

For more information:

• https://portal.influxdata.com/downloads

1.2.3 Containers compatibility

If you are running Kafka in containers, you are at the right place, all of the components can natively run in docker.

1.2.4 Kafka and Confluent compatibility

Apache Kafka and Confluent compatibility

• Qualification and certification is made against Kafka V2.x and Confluent V6.x, earlier versions might however
work with no issues but are not being tested

1.2.5 Web Browser compatibility

The application can be used with any of the supported Web Browser by Splunk:

https://docs.splunk.com/Documentation/Splunk/latest/Installation/Systemrequirements

1.3 Known Issues

There are no known issues at the moment.

1.4 Support & donate

I am supporting my applications for free, for the good of everyone and on my own private time. As you can
guess, this is a huge amount of time and efforts.

If you enjoy it, and want to support and encourage me, buy me a coffee (or a Pizza) and you will make me very happy!

1.2. Compatibility 5

https://portal.influxdata.com/downloads
https://docs.splunk.com/Documentation/Splunk/latest/Installation/Systemrequirements

telegraf-kafka Documentation, Release 1

The Splunk application for Kafka monitoring with Telegraf is community supported.

To get support, use of one the following options:

1.4.1 Splunk community

Open a question in Splunk Community:

• https://community.splunk.com

1.4.2 Splunk community Slack

Contact me on Splunk community slack, or even better, ask the community !

• https://splunk-usergroups.slack.com

1.4.3 Open a issue in Git

To report an issue, request a feature change or improvement, please open an issue in Github:

• https://github.com/guilhemmarchand/telegraf-kafka/issues

1.4.4 Email support

• guilhem.marchand@gmail.com

However, previous options are far betters, and will give you all the chances to get a quick support from the community
of fellow Splunkers.

1.5 Download

1.5.1 Splunk Application for Kafka monitoring with Telegraf

The Splunk application can be downloaded from:

Splunk base

• https://splunkbase.splunk.com/app/4268

GitHub

• https://github.com/guilhemmarchand/telegraf-kafka

6 Chapter 1. Overview:

https://community.splunk.com
https://splunk-usergroups.slack.com
https://github.com/guilhemmarchand/telegraf-kafka/issues
mailto:guilhem.marchand@gmail.com
https://splunkbase.splunk.com/app/4268
https://github.com/guilhemmarchand/telegraf-kafka

CHAPTER 2

Deployment and configuration:

2.1 Deployment & Upgrades

2.1.1 Deployment matrix

Splunk roles required
Search head yes
Indexer tiers no

If Splunk search heads are running in Search Head Cluster (SHC), the Splunk application must be deployed by the
SHC deployer.

2.1.2 Indexes creation

indexes

• Kafka SDM expects the creation of a metric index, by default telegraf_kafka which can be configured by
customizing the macro telegraf_kafka_index

• If you use Confluent interceptors, the application expects the creation of a metric index
confluent_interceptor_metrics which can be configured by customizing the macro
confluent_interceptor_index

2.1.3 Dependencies

The application depends on:

• Horseshoe Meter - Custom Visualization, Splunk Base: https://splunkbase.splunk.com/app/3166

7

https://splunkbase.splunk.com/app/3166

telegraf-kafka Documentation, Release 1

2.1.4 Initial deployment

The deployment of the Splunk application for Kafka monitoring with Telegraf is straight forward:

• Using the application manager in Splunk Web (Settings / Manages apps)

• Extracting the content of the tgz archive in the “apps” directory of Splunk

• For SHC configurations (Search Head Cluster), extract the tgz content in the SHC deployer and publish the SHC
bundle

2.1.5 Upgrades

Upgrading the Splunk application is pretty much the same operation than the initial deployment.

2.1.6 Upgrades of the components

Upgrading the different components (Telegraf, Jolokia, etc.) rely on each of the technologies, please consult the
deployment main pages.

2.2 Implementation & data collection

Data collection diagram overview:

8 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

2.2.1 Splunk configuration

2.2. Implementation & data collection 9

telegraf-kafka Documentation, Release 1

Index definition

indexes

• Kafka SDM expects the creation of a metric index, by default telegraf_kafka which can be configured by
customizing the macro telegraf_kafka_index

indexes.conf example with no Splunk volume::

[telegraf_kafka]
coldPath = $SPLUNK_DB/telegraf_kafka/colddb
datatype = metric
homePath = $SPLUNK_DB/telegraf_kafka/db
thawedPath = $SPLUNK_DB/telegraf_kafka/thaweddb

indexes.conf example with Splunk volumes::

[telegraf_kafka]
coldPath = volume:cold/telegraf_kafka/colddb
datatype = metric
homePath = volume:primary/telegraf_kafka/db
thawedPath = $SPLUNK_DB/telegraf_kafka/thaweddb

In a Splunk distributed configuration (cluster of indexers), this configuration stands on the cluster master node.

All Splunk searches included in the added refer to the utilisation of a macro called telegraf_kafka_index
configured in:

• telegraf-kafka/default/macros.conf

If you wish to use a different index model, this macro shall be customized to override the default model.

Confluent Interceptors monitoring:

indexes

• If you use Confluent interceptors, the application expects the creation of a metric index
confluent_interceptor_metrics which can be configured by customizing the macro
confluent_interceptor_index

indexes.conf example with no Splunk volume::

[confluent_interceptor_index]
coldPath = $SPLUNK_DB/confluent_interceptor_index/colddb
datatype = metric
homePath = $SPLUNK_DB/confluent_interceptor_index/db
thawedPath = $SPLUNK_DB/confluent_interceptor_index/thaweddb

indexes.conf example with Splunk volumes::

[confluent_interceptor_index]
coldPath = volume:cold/confluent_interceptor_index/colddb
datatype = metric
homePath = volume:primary/confluent_interceptor_index/db
thawedPath = $SPLUNK_DB/confluent_interceptor_index/thaweddb

10 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

You can technically use the same index than for telegraf based metrics, or any index of your choice, if so update the
macro called confluent_interceptor_index configured in:

• telegraf-kafka/default/macros.conf

Role membership

The application creates a builtin Splunk role called “kafka_admin” that provides:

• write permissions to the application name space

• write permissions to the various KVstore based lookups used for configuration purposes of the application

• can be used to automatically notify the Kafka administrators if you use Splunk Cloud Gateway and Splunk
Mobile Connected Experience

We suggest that you configure the Kafka administrators to be member of this role. (by user configuration, role mapping
or inheritance)

HEC input ingestion and definition

HTTP Event Collector

• The default recommended way of ingesting the Kafka metrics is using the HTTP Events Collector method which
requires the creation of an HEC token

inputs.conf example:

[http://kafka_monitoring]
disabled = 0
index = telegraf_kafka
indexes = telegraf_kafka
token = 205d43f1-2a31-4e60-a8b3-327eda49944a

If you create the HEC input via Splunk Web interface, it is not required to select an explicit value for source and
sourcetype.

If you plan to use Confluent Interceptors monitoring, you need to allow the target index too, for instance:

[http://kafka_monitoring]
disabled = 0
index = telegraf_kafka
indexes = telegraf_kafka,confluent_interceptor_index
token = 205d43f1-2a31-4e60-a8b3-327eda49944a

The HEC input will be ideally relying on a load balancer to provides resiliency and load balancing across your HEC
input nodes.

Other ingesting methods

There are other methods possible to ingest the Kafka metrics in Splunk:

• TCP input (graphite format with tags support)

2.2. Implementation & data collection 11

telegraf-kafka Documentation, Release 1

• KAFKA ingestion (Kafka destination from Telegraf in graphite format with tags support, and Splunk connect
for Kafka)

• File monitoring with standard Splunk input monitors (file output plugin from Telegraf)

Notes: In the very specific context of monitoring Kafka, it is not a good design to use Kafka as the ingestion method
since you will most likely never be able to know when an issue happens on Kafka.

These methods require the deployment of an additional Technology addon: https://splunkbase.splunk.com/app/
4193

These methods are heavily described here: https://da-itsi-telegraf-os.readthedocs.io/en/latest/telegraf.html

These methods should however be considered as a second choice only if sending to HEC is not possible.

2.2.2 Telegraf installation and configuration

Telegraf installation, configuration and start

If you are running Telegraf as a regular process in machine, the standard installation of Telegraf is really
straightforward, consult:

• https://github.com/influxdata/telegraf

If you have a Splunk Universal Forwarder deployment, you can deploy, run and maintain Telegraf and its
configuration through a Splunk application (TA), consult:

• https://da-itsi-telegraf-os.readthedocs.io/en/latest/telegraf.html#telegraf-deployment-as-splunk-application-deployed-by-splunk-ta

An example of a ready to use TA application can be found here:

• https://github.com/guilhemmarchand/TA-telegraf-amd64

For Splunk customers, this solution has various advantages as you can deploy and maintain using your existing Splunk
infrastructure.

Telegraf is extremely container friendly, a container approach is very convenient as you can easily run multiple
Telegraf containers to monitor each of the Kafka infrastructure components:

• https://hub.docker.com/r/_/telegraf/

Data collection environment design:

The most scalalable and highly available design in term of where placing the Telegraf instances is to deploy Telegraf
locally on each server to be monitored (and collect locally the component) or running as a side car container for
Kubernetes based environments.

It is to possible to collect multiple instances of multiple components via a unique Telegraf instance, however there will
be a limit where issues can start, and this design will not provide high availability as the failure of this instance will
impact the whole metric collection.

2.2.3 Telegraf configuration generator

The application provides a builtin user interface you can use to generate a telegraf.conf configuration file based
on your parameters and for all the components to be monitored:

• Menu Settings / Telegraf Configuration Generator

12 Chapter 2. Deployment and configuration:

https://splunkbase.splunk.com/app/4193
https://splunkbase.splunk.com/app/4193
https://da-itsi-telegraf-os.readthedocs.io/en/latest/telegraf.html
https://github.com/influxdata/telegraf
https://da-itsi-telegraf-os.readthedocs.io/en/latest/telegraf.html#telegraf-deployment-as-splunk-application-deployed-by-splunk-ta
https://github.com/guilhemmarchand/TA-telegraf-amd64
https://hub.docker.com/r/_/telegraf/

telegraf-kafka Documentation, Release 1

2.2.4 Telegraf output configuration

Whether you will be running Telegraf in various containers, or installed as a regular software within the different
servers composing your Kafka infrastructure, a minimal configuration is required to teach Telegraf how to forward the
metrics to your Splunk deployment.

Telegraf is able to send to data to Splunk in different ways:

• Splunk HTTP Events Collector (HEC) - Since Telegraf v1.8

• Splunk TCP inputs in Graphite format with tags support and the TA for Telegraf

• Apache Kafka topic in Graphite format with tags support and the TA for Telegraf and Splunk connect for Kafka

Who watches for the watcher?

As you are running a Kafka deployment, it would seem very logical to produce metrics to a Kafka topic and consume
these metrics from the topic. However, this is not an ideal monitoring architecture design due to potential lack of
visibility in case of an outage or issues.

If you use this same system for monitoring Kafka itself, it is very likely that you will never know when Kafka is broken
because the data flow for your monitoring system will be broken as well.

The recommendation is to rely either on Splunk HEC or TCP inputs to forward Telegraf metrics data for the Kafka
monitoring.

2.2. Implementation & data collection 13

telegraf-kafka Documentation, Release 1

A minimal configuration for telegraf.conf, running in container or as a regular process in machine and for-
warding to HEC:

[global_tags]
the env tag is used by the application for multi-environments management
env = "my_env"
the label tag is an optional tag used by the application that you can use as

→˓additional label for the services or infrastructure
label = "my_env_label"

[agent]
interval = "10s"
flush_interval = "10s"
hostname = "$HOSTNAME"

Regular OS monitoring for Linux OS

Read metrics about cpu usage
[[inputs.cpu]]

Whether to report per-cpu stats or not
percpu = true
Whether to report total system cpu stats or not
totalcpu = true
If true, collect raw CPU time metrics.
collect_cpu_time = false
If true, compute and report the sum of all non-idle CPU states.
report_active = false

Read metrics about disk usage by mount point
[[inputs.disk]]

Ignore mount points by filesystem type.
ignore_fs = ["tmpfs", "devtmpfs", "devfs"]

Read metrics about disk IO by device
[[inputs.diskio]]

Get kernel statistics from /proc/stat
[[inputs.kernel]]

Read metrics about memory usage
[[inputs.mem]]

Get the number of processes and group them by status
[[inputs.processes]]

Read metrics about swap memory usage
[[inputs.swap]]

Read metrics about system load & uptime
[[inputs.system]]

Read metrics about network interface usage
[[inputs.net]]

Read TCP metrics such as established, time wait and sockets counts.
[[inputs.netstat]]

(continues on next page)

14 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

(continued from previous page)

Monitor process cpu and memory usage
[[inputs.procstat]]

pattern = ".*"

outputs
[[outputs.http]]

url = "https://splunk:8088/services/collector"
insecure_skip_verify = true
data_format = "splunkmetric"
Provides time, index, source overrides for the HEC

splunkmetric_hec_routing = true
Additional HTTP headers
[outputs.http.headers]

Should be set manually to "application/json" for json data_format
Content-Type = "application/json"
Authorization = "Splunk 205d43f1-2a31-4e60-a8b3-327eda49944a"
X-Splunk-Request-Channel = "205d43f1-2a31-4e60-a8b3-327eda49944a"

If for some reasons, you have to use either of the 2 other solutions, please consult:

• https://da-itsi-telegraf-os.readthedocs.io/en/latest/telegraf.html

Notes: The configuration above provides out of the box OS monitoring for the hosts, which can be used by the
Operating System monitoring application for Splunk:

https://splunkbase.splunk.com/app/4271/

2.2.5 Jolokia JVM monitoring

The following Kafka components require Jolokia to be deployed and started, as the modern and efficient inter-
face to JMX that is collected by Telegraf:

• Zookeeper

• Apache Kafka Brokers

• Apache Kafka Connect

• Confluent schema-registry

• Confluent ksql-server

• Confluent kafka-rest

For the complete documentation of Jolokia, see:

• https://jolokia.org

Jolokia JVM agent can be started in 2 ways, either as using the -javaagent argument during the start of the
JVM, or on the fly by attaching Jolokia to the PID ot the JVM:

• https://jolokia.org/reference/html/agents.html#agents-jvm

2.2. Implementation & data collection 15

https://da-itsi-telegraf-os.readthedocs.io/en/latest/telegraf.html
https://splunkbase.splunk.com/app/4271/
https://jolokia.org
https://jolokia.org/reference/html/agents.html#agents-jvm

telegraf-kafka Documentation, Release 1

2.2.6 Starting Jolokia with the JVM

To start Jolokia agent using the -javaagent argument, use such option at the start of the JVM:

-javaagent:/opt/jolokia/jolokia.jar=port=8778,host=0.0.0.0

Note: This method is the method used in the docker example within this documentation by using the environment
variables of the container.

When running on dedicated servers or virtual machines, update the relevant systemd configuration file to start
Jolokia automatically:

For Zookeeper

For bare-metals and dedicated VMs:

• Edit: /lib/systemd/system/confluent-zookeeper.service

• Add -javaagent argument:

[Unit]
Description=Apache Kafka - ZooKeeper
Documentation=http://docs.confluent.io/
After=network.target

[Service]
Type=simple
User=cp-kafka
Group=confluent
ExecStart=/usr/bin/zookeeper-server-start /etc/kafka/zookeeper.properties
Environment="KAFKA_OPTS=-javaagent:/opt/jolokia/jolokia.jar=port=8778,host=0.0.0.0"
Environment="LOG_DIR=/var/log/zookeeper"
TimeoutStopSec=180
Restart=no

[Install]
WantedBy=multi-user.target

• Reload systemd and restart:

sudo systemctl daemon-restart
sudo systemctl restart confluent-zookeeper

For container based environments:

Define the following environment variable when starting the containers:

KAFKA_OPTS: "-javaagent:/opt/jolokia/jolokia.jar=port=8778,host=0.0.0.0"

For Kafka brokers

For bare-metals and dedicated VMs:

• Edit: /lib/systemd/system/confluent-kafka.service

• Add -javaagent argument:

16 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

[Unit]
Description=Apache Kafka - broker
Documentation=http://docs.confluent.io/
After=network.target confluent-zookeeper.target

[Service]
Type=simple
User=cp-kafka
Group=confluent
ExecStart=/usr/bin/kafka-server-start /etc/kafka/server.properties
Environment="KAFKA_OPTS=-javaagent:/opt/jolokia/jolokia.jar=port=8778,host=0.0.0.0"
TimeoutStopSec=180
Restart=no

[Install]
WantedBy=multi-user.target

• Reload systemd and restart:

sudo systemctl daemon-restart
sudo systemctl restart confluent-kafka

For container based environments:

Define the following environment variable when starting the containers:

KAFKA_OPTS: "-javaagent:/opt/jolokia/jolokia.jar=port=8778,host=0.0.0.0"

For Kafka Connect

For bare-metals and dedicated VMs:

• Edit: /lib/systemd/system/confluent-kafka-connect.service

• Add -javaagent argument:

[Unit]
Description=Apache Kafka Connect - distributed
Documentation=http://docs.confluent.io/
After=network.target confluent-kafka.target

[Service]
Type=simple
User=cp-kafka-connect
Group=confluent
ExecStart=/usr/bin/connect-distributed /etc/kafka/connect-distributed.properties
Environment="KAFKA_OPTS=-javaagent:/opt/jolokia/jolokia.jar=port=8778,host=0.0.0.0"
Environment="LOG_DIR=/var/log/connect"
TimeoutStopSec=180
Restart=no

[Install]
WantedBy=multi-user.target

• Reload systemd and restart:

2.2. Implementation & data collection 17

telegraf-kafka Documentation, Release 1

sudo systemctl daemon-restart
sudo systemctl restart confluent-kafka-connect

For container based environments:

Define the following environment variable when starting the containers:

KAFKA_OPTS: "-javaagent:/opt/jolokia/jolokia.jar=port=8778,host=0.0.0.0"

For Confluent schema-registry

For bare-metals and dedicated VMs:

• Edit: /lib/systemd/system/confluent-schema-registry.service

• Add -javaagent argument:

[Unit]
Description=RESTful Avro schema registry for Apache Kafka
Documentation=http://docs.confluent.io/
After=network.target confluent-kafka.target

[Service]
Type=simple
User=cp-schema-registry
Group=confluent
Environment="LOG_DIR=/var/log/confluent/schema-registry"
Environment="SCHEMA_REGISTRY_OPTS=-javaagent:/opt/jolokia/jolokia.jar=port=8778,
→˓host=0.0.0.0"
ExecStart=/usr/bin/schema-registry-start /etc/schema-registry/schema-registry.
→˓properties
TimeoutStopSec=180
Restart=no

[Install]
WantedBy=multi-user.target

• Reload systemd and restart:

sudo systemctl daemon-restart
sudo systemctl restart confluent-schema-registry

For container based environments:

Define the following environment variable when starting the containers:

SCHEMA_REGISTRY_OPTS: "-javaagent:/opt/jolokia/jolokia.jar=port=8778,host=0.0.0.0"

For Confluent ksql-server

For bare-metals and dedicated VMs:

• Edit: /lib/systemd/system/confluent-ksqldb.service

• Add -javaagent argument:

18 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

Description=Streaming SQL engine for Apache Kafka
Documentation=http://docs.confluent.io/
After=network.target confluent-kafka.target confluent-schema-registry.target

[Service]
Type=simple
User=cp-ksql
Group=confluent
Environment="LOG_DIR=/var/log/confluent/ksql"
Environment="KSQL_OPTS=-javaagent:/opt/jolokia/jolokia.jar=port=8778,host=0.0.0.0"
ExecStart=/usr/bin/ksql-server-start /etc/ksqldb/ksql-server.properties
TimeoutStopSec=180
Restart=no

[Install]
WantedBy=multi-user.target

• Reload systemd and restart:

sudo systemctl daemon-restart
sudo systemctl restart confluent-ksqldb

For container based environments:

Define the following environment variable when starting the containers:

KSQL_OPTS: "-javaagent:/opt/jolokia/jolokia.jar=port=8778,host=0.0.0.0"

For Confluent kafka-rest

For bare-metals and dedicated VMs:

• Edit: /lib/systemd/system/confluent-kafka-rest.service

• Add -javaagent argument:

[Unit]
Description=A REST proxy for Apache Kafka
Documentation=http://docs.confluent.io/
After=network.target confluent-kafka.target

[Service]
Type=simple
User=cp-kafka-rest
Group=confluent
Environment="LOG_DIR=/var/log/confluent/kafka-rest"
Environment="KAFKAREST_OPTS=-javaagent:/opt/jolokia/jolokia.jar=port=8778,host=0.0.0.0
→˓"

ExecStart=/usr/bin/kafka-rest-start /etc/kafka-rest/kafka-rest.properties
TimeoutStopSec=180
Restart=no

[Install]
WantedBy=multi-user.target

• Reload systemd and restart:

2.2. Implementation & data collection 19

telegraf-kafka Documentation, Release 1

sudo systemctl daemon-restart
sudo systemctl restart confluent-kafka-rest

For container based environments:

Define the following environment variable when starting the containers:

KAFKAREST_OPTS: "-javaagent:/opt/jolokia/jolokia.jar=port=8778,host=0.0.0.0"

Notes: “KAFKAREST_OPTS” is not a typo, this is the real name of the environment variable for some reason.

2.2.7 Starting Jolokia on the fly

To attach Jolokia agent to an existing JVM, identify its process ID (PID), simplistic example:

ps -ef | grep 'kafka.properties' | grep -v grep | awk '{print $1}'

Then:

java -jar /opt/jolokia/jolokia.jar --host 0.0.0.0 --port 8778 start <PID>

Add this operation to any custom init scripts you use to start the Kafka components.

2.2.8 Zookeeper monitoring

Since the v1.1.31, Zookeeper metrics are now collected via JMX and Jolokia rather than the Telegraf Zookeeper plugin.

Collecting with Telegraf

Depending on how you run Kafka and your architecture preferences, you may prefer to collect all the brokers metrics
from one Telegraf collector, or installed locally on the Kafka brocker machine.

Connecting to multiple remote Jolokia instances:

[[inputs.jolokia2_agent]]
name_prefix = "zk_"
urls = ["http://zookeeper-1:8778/jolokia","http://zookeeper-2:8778/jolokia","http://

→˓zookeeper-3:8778/jolokia"]

Connecting to the local Jolokia instance:

Zookeeper JVM monitoring
[[inputs.jolokia2_agent]]

name_prefix = "zk_"
urls = ["http://$HOSTNAME:8778/jolokia"]

Full telegraf.conf example

The following telegraf.conf collects a cluster of 3 Zookeeper nodes:

20 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

[global_tags]
the env tag is used by the application for multi-environments management
env = "my_env"
the label tag is an optional tag used by the application that you can use as

→˓additional label for the services or infrastructure
label = "my_env_label"

[agent]
interval = "10s"
flush_interval = "10s"
hostname = "$HOSTNAME"

outputs
[[outputs.http]]

url = "https://splunk:8088/services/collector"
insecure_skip_verify = true
data_format = "splunkmetric"
Provides time, index, source overrides for the HEC

splunkmetric_hec_routing = true
Additional HTTP headers
[outputs.http.headers]

Should be set manually to "application/json" for json data_format
Content-Type = "application/json"
Authorization = "Splunk 205d43f1-2a31-4e60-a8b3-327eda49944a"
X-Splunk-Request-Channel = "205d43f1-2a31-4e60-a8b3-327eda49944a"

Zookeeper JMX collection

[[inputs.jolokia2_agent]]
name_prefix = "zk_"
urls = ["http://zookeeper-1:8778/jolokia","http://zookeeper-2:8778/jolokia","http://

→˓zookeeper-3:8778/jolokia"]

[[inputs.jolokia2_agent.metric]]
name = "quorum"
mbean = "org.apache.ZooKeeperService:name0=*"
tag_keys = ["name0"]

[[inputs.jolokia2_agent.metric]]
name = "leader"
mbean = "org.apache.ZooKeeperService:name0=*,name1=*,name2=Leader"
tag_keys = ["name1"]

[[inputs.jolokia2_agent.metric]]
name = "follower"
mbean = "org.apache.ZooKeeperService:name0=*,name1=*,name2=Follower"
tag_keys = ["name1"]

Visualization of metrics within the Splunk metrics workspace application:

2.2. Implementation & data collection 21

telegraf-kafka Documentation, Release 1

Using mcatalog search command to verify data availability:

| mcatalog values(metric_name) values(_dims) where index=* metric_name=zk_*

2.2.9 Kafka brokers monitoring with Jolokia

Collecting with Telegraf

Depending on how you run Kafka and your architecture preferences, you may prefer to collect all the brokers metrics
from one Telegraf collector, or installed locally on the Kafka brocker machine.

Connecting to multiple remote Jolokia instances:

Kafka JVM monitoring
[[inputs.jolokia2_agent]]

name_prefix = "kafka_"
urls = ["http://kafka-1:18778/jolokia","http://kafka-2:28778/jolokia","http://kafka-

→˓3:38778/jolokia"]

Connecting to the local Jolokia instance:

Kafka JVM monitoring
[[inputs.jolokia2_agent]]

name_prefix = "kafka_"
urls = ["http://$HOSTNAME:8778/jolokia"]

Full telegraf.conf example

The following telegraf.conf collects a cluster of 3 Kafka brokers:

[global_tags]
the env tag is used by the application for multi-environments management
env = "my_env"
the label tag is an optional tag used by the application that you can use as

→˓additional label for the services or infrastructure
label = "my_env_label"

[agent]

(continues on next page)

22 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

(continued from previous page)

interval = "10s"
flush_interval = "10s"
hostname = "$HOSTNAME"

outputs
[[outputs.http]]

url = "https://splunk:8088/services/collector"
insecure_skip_verify = true
data_format = "splunkmetric"
Provides time, index, source overrides for the HEC

splunkmetric_hec_routing = true
Additional HTTP headers
[outputs.http.headers]

Should be set manually to "application/json" for json data_format
Content-Type = "application/json"
Authorization = "Splunk 205d43f1-2a31-4e60-a8b3-327eda49944a"
X-Splunk-Request-Channel = "205d43f1-2a31-4e60-a8b3-327eda49944a"

Kafka JVM monitoring

[[inputs.jolokia2_agent]]
name_prefix = "kafka_"
urls = ["http://kafka-1:18778/jolokia","http://kafka-2:28778/jolokia","http://kafka-

→˓3:38778/jolokia"]

[[inputs.jolokia2_agent.metric]]
name = "controller"
mbean = "kafka.controller:name=*,type=*"
field_prefix = "$1."

[[inputs.jolokia2_agent.metric]]
name = "replica_manager"
mbean = "kafka.server:name=*,type=ReplicaManager"
field_prefix = "$1."

[[inputs.jolokia2_agent.metric]]
name = "purgatory"
mbean = "kafka.server:delayedOperation=*,name=*,

→˓type=DelayedOperationPurgatory"
field_prefix = "$1."
field_name = "$2"

[[inputs.jolokia2_agent.metric]]
name = "client"
mbean = "kafka.server:client-id=*,type=*"
tag_keys = ["client-id", "type"]

[[inputs.jolokia2_agent.metric]]
name = "network"
mbean = "kafka.network:name=*,request=*,type=RequestMetrics"
field_prefix = "$1."
tag_keys = ["request"]

[[inputs.jolokia2_agent.metric]]
name = "network"
mbean = "kafka.network:name=ResponseQueueSize,type=RequestChannel"
field_prefix = "ResponseQueueSize"

(continues on next page)

2.2. Implementation & data collection 23

telegraf-kafka Documentation, Release 1

(continued from previous page)

tag_keys = ["name"]

[[inputs.jolokia2_agent.metric]]
name = "network"
mbean = "kafka.network:name=NetworkProcessorAvgIdlePercent,type=SocketServer"
field_prefix = "NetworkProcessorAvgIdlePercent"
tag_keys = ["name"]

[[inputs.jolokia2_agent.metric]]
name = "topics"
mbean = "kafka.server:name=*,type=BrokerTopicMetrics"
field_prefix = "$1."

[[inputs.jolokia2_agent.metric]]
name = "topic"
mbean = "kafka.server:name=*,topic=*,type=BrokerTopicMetrics"
field_prefix = "$1."
tag_keys = ["topic"]

[[inputs.jolokia2_agent.metric]]
name = "partition"
mbean = "kafka.log:name=*,partition=*,topic=*,type=Log"
field_name = "$1"
tag_keys = ["topic", "partition"]

[[inputs.jolokia2_agent.metric]]
name = "log"
mbean = "kafka.log:name=LogFlushRateAndTimeMs,type=LogFlushStats"
field_name = "LogFlushRateAndTimeMs"
tag_keys = ["name"]

[[inputs.jolokia2_agent.metric]]
name = "partition"
mbean = "kafka.cluster:name=UnderReplicated,partition=*,topic=*,type=Partition"
field_name = "UnderReplicatedPartitions"
tag_keys = ["topic", "partition"]

[[inputs.jolokia2_agent.metric]]
name = "request_handlers"
mbean = "kafka.server:name=RequestHandlerAvgIdlePercent,

→˓type=KafkaRequestHandlerPool"
tag_keys = ["name"]

JVM garbage collector monitoring
[[inputs.jolokia2_agent.metric]]

name = "jvm_garbage_collector"
mbean = "java.lang:name=*,type=GarbageCollector"
paths = ["CollectionTime", "CollectionCount", "LastGcInfo"]
tag_keys = ["name"]

Visualization of metrics within the Splunk metrics workspace application:

24 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

Using mcatalog search command to verify data availability:

| mcatalog values(metric_name) values(_dims) where index=* metric_name=kafka_*.*

2.2.10 Kafka connect monitoring

Collecting with Telegraf

Connecting to multiple remote Jolokia instances:

Kafka-connect JVM monitoring
[[inputs.jolokia2_agent]]

name_prefix = "kafka_connect."
urls = ["http://kafka-connect-1:18779/jolokia","http://kafka-connect-2:28779/jolokia

→˓","http://kafka-connect-3:38779/jolokia"]

Connecting to local Jolokia instance:

Kafka-connect JVM monitoring
[[inputs.jolokia2_agent]]
name_prefix = "kafka_connect."
urls = ["http://$HOSTNAME:8778/jolokia"]

Full telegraf.conf example

bellow a full telegraf.conf example:

[global_tags]
the env tag is used by the application for multi-environments management
env = "my_env"
the label tag is an optional tag used by the application that you can use as

→˓additional label for the services or infrastructure
label = "my_env_label"

(continues on next page)

2.2. Implementation & data collection 25

telegraf-kafka Documentation, Release 1

(continued from previous page)

[agent]
interval = "10s"
flush_interval = "10s"
hostname = "$HOSTNAME"

outputs
[[outputs.http]]

url = "https://splunk:8088/services/collector"
insecure_skip_verify = true
data_format = "splunkmetric"
Provides time, index, source overrides for the HEC

splunkmetric_hec_routing = true
Additional HTTP headers
[outputs.http.headers]

Should be set manually to "application/json" for json data_format
Content-Type = "application/json"
Authorization = "Splunk 205d43f1-2a31-4e60-a8b3-327eda49944a"
X-Splunk-Request-Channel = "205d43f1-2a31-4e60-a8b3-327eda49944a"

Kafka-connect JVM monitoring

[[inputs.jolokia2_agent]]
name_prefix = "kafka_connect."
urls = ["http://kafka-connect-1:18779/jolokia","http://kafka-connect-2:28779/jolokia

→˓","http://kafka-connect-3:38779/jolokia"]

[[inputs.jolokia2_agent.metric]]
name = "worker"
mbean = "kafka.connect:type=connect-worker-metrics"

[[inputs.jolokia2_agent.metric]]
name = "worker"
mbean = "kafka.connect:type=connect-worker-rebalance-metrics"

[[inputs.jolokia2_agent.metric]]
name = "connector-task"
mbean = "kafka.connect:type=connector-task-metrics,connector=*,task=*"
tag_keys = ["connector", "task"]

[[inputs.jolokia2_agent.metric]]
name = "sink-task"
mbean = "kafka.connect:type=sink-task-metrics,connector=*,task=*"
tag_keys = ["connector", "task"]

[[inputs.jolokia2_agent.metric]]
name = "source-task"
mbean = "kafka.connect:type=source-task-metrics,connector=*,task=*"
tag_keys = ["connector", "task"]

[[inputs.jolokia2_agent.metric]]
name = "error-task"
mbean = "kafka.connect:type=task-error-metrics,connector=*,task=*"
tag_keys = ["connector", "task"]

Kafka connect return a status value which is non numerical
Using the enum processor with the following configuration replaces the string value
→˓by our mapping (continues on next page)

26 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

(continued from previous page)

[[processors.enum]]
[[processors.enum.mapping]]
Name of the field to map
field = "status"

Table of mappings
[processors.enum.mapping.value_mappings]

paused = 0
running = 1
unassigned = 2
failed = 3
destroyed = 4

Visualization of metrics within the Splunk metrics workspace application:

Using mcatalog search command to verify data availability:

| mcatalog values(metric_name) values(_dims) where index=* metric_name=kafka_connect.*

2.2.11 Kafka Xinfra monitor - end to end monitoring

Installing and starting the Kafka monitor

LinkedIn provides an extremely powerful open source end to end monitoring solution for Kafka, please consult:

• https://github.com/linkedin/kafka-monitor

As a builtin configuration, the kafka-monitor implements a jolokia agent, so collecting the metrics with Telegraf cannot
be more easy !

It is very straightforward to run the kafka-monitor in a docker container, first you need to create your own
image:

• https://github.com/linkedin/kafka-monitor/tree/master/docker

In a nutshell, you would:

2.2. Implementation & data collection 27

https://github.com/linkedin/kafka-monitor
https://github.com/linkedin/kafka-monitor/tree/master/docker

telegraf-kafka Documentation, Release 1

git clone https://github.com/linkedin/kafka-monitor.git
cd kafka-monitor
./gradlew jar
cd docker

Edit the Makefile to match your needs

make container
make push

Then start your container, example with docker-compose:

kafka-monitor:
image: guilhemmarchand/kafka-monitor:2.0.3
hostname: kafka-monitor
volumes:

- ../kafka-monitor:/usr/local/share/kafka-monitor
command: "/opt/kafka-monitor/bin/kafka-monitor-start.sh /usr/local/share/kafka-
→˓monitor/kafka-monitor.properties"

Once your Kafka monitor is running, you need a Telegraf instance that will be collecting the JMX beans,
example:

[global_tags]
the env tag is used by the application for multi-environments management
env = "my_env"
the label tag is an optional tag used by the application that you can use as

→˓additional label for the services or infrastructure
label = "my_env_label"

[agent]
interval = "10s"
flush_interval = "10s"
hostname = "$HOSTNAME"

outputs
[[outputs.http]]

url = "https://splunk:8088/services/collector"
insecure_skip_verify = true
data_format = "splunkmetric"
Provides time, index, source overrides for the HEC

splunkmetric_hec_routing = true
Additional HTTP headers
[outputs.http.headers]

Should be set manually to "application/json" for json data_format
Content-Type = "application/json"
Authorization = "Splunk 205d43f1-2a31-4e60-a8b3-327eda49944a"
X-Splunk-Request-Channel = "205d43f1-2a31-4e60-a8b3-327eda49944a"

Kafka JVM monitoring

[[inputs.jolokia2_agent]]
name_prefix = "kafka_"
urls = ["http://kafka-monitor:8778/jolokia"]

[[inputs.jolokia2_agent.metric]]
name = "kafka-monitor"
mbean = "kmf.services:name=*,type=*"

28 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

Visualization of metrics within the Splunk metrics workspace application:

Using mcatalog search command to verify data availability:

| mcatalog values(metric_name) values(_dims) where index=* metric_name=kafka_kafka-
→˓monitor.*

2.2.12 Confluent schema-registry

Collecting with Telegraf

Connecting to multiple remote Jolokia instances:

[[inputs.jolokia2_agent]]
name_prefix = "kafka_schema-registry."
urls = ["http://schema-registry:18783/jolokia"]

Connecting to local Jolokia instance:

Kafka-connect JVM monitoring
[[inputs.jolokia2_agent]]
name_prefix = "kafka_schema-registry."
urls = ["http://$HOSTNAME:8778/jolokia"]

Full telegraf.conf example

bellow a full telegraf.conf example:

[global_tags]
the env tag is used by the application for multi-environments management
env = "my_env"
the label tag is an optional tag used by the application that you can use as

→˓additional label for the services or infrastructure

(continues on next page)

2.2. Implementation & data collection 29

telegraf-kafka Documentation, Release 1

(continued from previous page)

label = "my_env_label"

[agent]
interval = "10s"
flush_interval = "10s"
hostname = "$HOSTNAME"

outputs
[[outputs.http]]

url = "https://splunk:8088/services/collector"
insecure_skip_verify = true
data_format = "splunkmetric"
Provides time, index, source overrides for the HEC

splunkmetric_hec_routing = true
Additional HTTP headers
[outputs.http.headers]

Should be set manually to "application/json" for json data_format
Content-Type = "application/json"
Authorization = "Splunk 205d43f1-2a31-4e60-a8b3-327eda49944a"
X-Splunk-Request-Channel = "205d43f1-2a31-4e60-a8b3-327eda49944a"

schema-registry JVM monitoring

[[inputs.jolokia2_agent]]
name_prefix = "kafka_schema-registry."
urls = ["http://schema-registry:18783/jolokia"]

[[inputs.jolokia2_agent.metric]]
name = "jetty-metrics"
mbean = "kafka.schema.registry:type=jetty-metrics"
paths = ["connections-active", "connections-opened-rate", "connections-closed-rate"]

[[inputs.jolokia2_agent.metric]]
name = "master-slave-role"
mbean = "kafka.schema.registry:type=master-slave-role"

[[inputs.jolokia2_agent.metric]]
name = "jersey-metrics"
mbean = "kafka.schema.registry:type=jersey-metrics"

Visualization of metrics within the Splunk metrics workspace application:

30 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

Using mcatalog search command to verify data availability:

| mcatalog values(metric_name) values(_dims) where index=* metric_name=kafka_schema-
→˓registry.*

2.2.13 Confluent ksql-server

Collecting with Telegraf

Connecting to multiple remote Jolokia instances:

[[inputs.jolokia2_agent]]
name_prefix = "kafka_"
urls = ["http://ksql-server-1:18784/jolokia"]

Connecting to local Jolokia instance:

[[inputs.jolokia2_agent]]
name_prefix = "kafka_"
urls = ["http://$HOSTNAME:18784/jolokia"]

Full telegraf.conf example

bellow a full telegraf.conf example:

[global_tags]
the env tag is used by the application for multi-environments management
env = "my_env"
the label tag is an optional tag used by the application that you can use as

→˓additional label for the services or infrastructure
label = "my_env_label"

[agent]
interval = "10s"

(continues on next page)

2.2. Implementation & data collection 31

telegraf-kafka Documentation, Release 1

(continued from previous page)

flush_interval = "10s"
hostname = "$HOSTNAME"

outputs
[[outputs.http]]

url = "https://splunk:8088/services/collector"
insecure_skip_verify = true
data_format = "splunkmetric"
Provides time, index, source overrides for the HEC

splunkmetric_hec_routing = true
Additional HTTP headers
[outputs.http.headers]

Should be set manually to "application/json" for json data_format
Content-Type = "application/json"
Authorization = "Splunk 205d43f1-2a31-4e60-a8b3-327eda49944a"
X-Splunk-Request-Channel = "205d43f1-2a31-4e60-a8b3-327eda49944a"

ksql-server JVM monitoring

[[inputs.jolokia2_agent]]
name_prefix = "kafka_"
urls = ["http://ksql-server:18784/jolokia"]

[[inputs.jolokia2_agent.metric]]
name = "ksql-server"
mbean = "io.confluent.ksql.metrics:type=*"

Visualization of metrics within the Splunk metrics workspace application:

Using mcatalog search command to verify data availability:

| mcatalog values(metric_name) values(_dims) where index=* metric_name=kafka_ksql-
→˓server.*

32 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

2.2.14 Confluent kafka-rest

Collecting with Telegraf

Connecting to multiple remote Jolokia instances:

[[inputs.jolokia2_agent]]
name_prefix = "kafka_kafka-rest."
urls = ["http://kafka-rest:8778/jolokia"]

Connecting to local Jolokia instance:

[[inputs.jolokia2_agent]]
name_prefix = "kafka_kafka-rest."
urls = ["http://$HOSTNAME:18785/jolokia"]

Full telegraf.conf example

bellow a full telegraf.conf example:

[global_tags]
the env tag is used by the application for multi-environments management
env = "my_env"
the label tag is an optional tag used by the application that you can use as

→˓additional label for the services or infrastructure
label = "my_env_label"

[agent]
interval = "10s"
flush_interval = "10s"
hostname = "$HOSTNAME"

outputs
[[outputs.http]]

url = "https://splunk:8088/services/collector"
insecure_skip_verify = true
data_format = "splunkmetric"
Provides time, index, source overrides for the HEC

splunkmetric_hec_routing = true
Additional HTTP headers
[outputs.http.headers]

Should be set manually to "application/json" for json data_format
Content-Type = "application/json"
Authorization = "Splunk 205d43f1-2a31-4e60-a8b3-327eda49944a"
X-Splunk-Request-Channel = "205d43f1-2a31-4e60-a8b3-327eda49944a"

kafka-rest JVM monitoring

[[inputs.jolokia2_agent]]
name_prefix = "kafka_kafka-rest."
urls = ["http://kafka-rest:18785/jolokia"]

[[inputs.jolokia2_agent.metric]]
name = "jetty-metrics"
mbean = "kafka.rest:type=jetty-metrics"
paths = ["connections-active", "connections-opened-rate", "connections-closed-rate

→˓"] (continues on next page)

2.2. Implementation & data collection 33

telegraf-kafka Documentation, Release 1

(continued from previous page)

[[inputs.jolokia2_agent.metric]]
name = "jersey-metrics"
mbean = "kafka.rest:type=jersey-metrics"

Visualization of metrics within the Splunk metrics workspace application:

Using mcatalog search command to verify data availability:

| mcatalog values(metric_name) values(_dims) where index=* metric_name=kafka_kafka_
→˓kafka-rest.*

2.2.15 Confluent Interceptor Monitoring

Implement Confluent Interceptor integration to Splunk

Confluent Interceptor allows monitoring latency from producers and consumers in any kind of ways and is a
very performing and rich way to monitor your Kafka components for Confluent customers:

• https://docs.confluent.io/current/control-center/installation/clients.html

To collect Confluent Interceptors metrics in Splunk, we use the following method:

• We use a Docker container to run the command center console consumer from the interceptor topic, by default
“_confluent-monitoring”

• You cannot consume this topic directly in Splunk without the command center console consumer as it contains
binary data that would not be readable without the command center

• Once started, the Docker container consumes the topic and outputs the data in the stdout

• The Docker container uses the Splunk Docker logging driver to forward this data to a Splunk HTTP Event
Collector endpoint

• Finally, we use the Splunk logs to metrics capabilities to transform the metric events into metrics stored in the
Splunk metric store

For more information about Splunk logs to metrics capabilities, consult:

34 Chapter 2. Deployment and configuration:

https://docs.confluent.io/current/control-center/installation/clients.html

telegraf-kafka Documentation, Release 1

• https://docs.splunk.com/Documentation/Splunk/latest/Metrics/L2MOverview

Make sure you enabled Interceptors in your products as explained in the Confluent documentation, for instance
for Kafka Connect you will add the following configuration in your worker properties:

producer.interceptor.classes=io.confluent.monitoring.clients.interceptor.
→˓MonitoringProducerInterceptor
consumer.interceptor.classes=io.confluent.monitoring.clients.interceptor.
→˓MonitoringConsumerInterceptor

Note: adding this config would require a restart of Kafka Connect to be applied

Once you decided where to run the Docker container, which could be the same machine hosting the command
center for example, you will:

Create a new metric (not a event index!) index to store the Confluent interceptor metrics, by default the application
excepts:

• confluent_interceptor_metrics

Create an HEC token dedicated for it, or allow an existing token to forward to the metric index, example:

[http://confluent_interceptor_metrics]
disabled = 0
index = confluent_interceptor_metrics
indexes = confluent_interceptor_metrics
token = xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxx

The following props.conf and transforms.conf configuration need to be deployed to the indexers or intermediate
forwarders, these are not need on the search heads:

Define the following sourcetype in a props.conf configuration file in Splunk:

[confluent_interceptor]
SHOULD_LINEMERGE=false
LINE_BREAKER=([\r\n]+)
CHARSET=UTF-8
Add the env, label and host inside the JSON, remove anything before the json start
SEDCMD-add_tags=s/.*?env=([^\s]*)\slabel=([^\s]*)\shost=([^\s]*)\s.*?\{/{"env":"\1",
→˓"label":"\2","host":"\3",/g

Be strict and performer
TIME_FORMAT=%s%3N
TIME_PREFIX=\"timestamp\":\"
MAX_TIMESTAMP_LOOKAHEAD=35

Handle the host Meta
TRANSFORMS-confluent-interceptor-host = confluent_interceptor_host
Only keep the metrics, send any other events from the container to the null queue
TRANSFORMS-setnull = confluent_interceptor_setnull

Logs to metrics

(continues on next page)

2.2. Implementation & data collection 35

https://docs.splunk.com/Documentation/Splunk/latest/Metrics/L2MOverview

telegraf-kafka Documentation, Release 1

(continued from previous page)

TRANSFORMS-fieldvalue=confluent_interceptor_fields_extraction
TRANSFORMS-metricslog=confluent_interceptor_eval_pipeline
METRIC-SCHEMA-TRANSFORMS=metric-schema:extract_metrics

Define the following transforms in a transforms.conf configuration file in Splunk:

[confluent_interceptor_setnull]
REGEX = ^confluentinc/cp-enterprise-control-center
DEST_KEY = queue
FORMAT = nullQueue

[confluent_interceptor_fields_extraction]
FORMAT = $1::$2
REGEX = \"([a-zA-Z0-9_\.]+)\":\"?([a-zA-Z0-9_\.-]+)
REPEAT_MATCH = true
SOURCE_KEY = _raw
WRITE_META = true

[confluent_interceptor_host]
DEST_KEY = MetaData:Host
REGEX = \"host\":\"([^\"]*)\"
FORMAT = host::$1

[confluent_interceptor_eval_pipeline]
INGEST_EVAL = metric_name="confluent_interceptor"

[metric-schema:extract_metrics]
METRIC-SCHEMA-MEASURES-confluent_interceptor=_ALLNUMS_
METRIC-SCHEMA-MEASURES-confluent_interceptor=count,aggregateBytes,aggregateCrc,
→˓totalLatency,minLatency,maxLatency,arrivalTime
METRIC-SCHEMA-BLACKLIST-DIMS-confluent_interceptor=host,session,sequence,window,
→˓minWindow,maxWindow

Define a new Docker container, you can use docker-compose for an easier deployment and maintenance:

• On the machine hosting the Docker container, create a new directory:

mkdir /opt/confluent-interceptor
cd /opt/confluent-interceptor

• In this directory, copy the command center properties file that you use for command center, at the minimal you
need to define the kafka broker and zookeeper connection string:

properties

• We use the properties file to bootrap the command center console consumer, not an instance of the command
center

• You can remove most of the configuration from the properties, what is required is providing the connectivity
settings to your Kafka brokers and Zookeeper ensemble

• If you SSL and any mechanism use of authentication, make sure to include the settings accordingly

• Do not update the setting confluent.controlcenter.data.dir from your Command center configu-
ration, if the directory cannot be used by the container, the console consumer will not start

control-center.properties

36 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

############################# Server Basics #############################

A comma separated list of Apache Kafka cluster host names (required)
bootstrap.servers=localhost:9092

A comma separated list of ZooKeeper host names (for ACLs)
zookeeper.connect=localhost:2181

Finally, create a new docker-compose.yml file as follows, edit the Splunk index, the HEC target and the HEC token to
match your deployment:

docker-compose version

• Make sure to download the very last version of docker-compose from https://docs.docker.com/compose/install

• If you cannot use a recent version of docker-compose and/or the Docker engine, lower the version on top of the
yaml file

version: '3.8'
services:

confluent-interceptor:
image: confluentinc/cp-enterprise-control-center
restart: always
hostname: confluent-interceptor
logging:

driver: splunk
options:

splunk-token: "xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxx"
splunk-url: "https://mysplunk.domain.com:8088"
splunk-insecureskipverify: "true"
splunk-verify-connection: "false"
splunk-index: "confluent_interceptor_metrics"
splunk-sourcetype: "confluent_interceptor"
splunk-format: "raw"
tag: "{{.ImageName}}/{{.Name}}/{{.ID}}"
env: "env,label,host"

mem_limit: 600m
extra_hosts:

- "kafka-1 kafka-1.acme.com:xxx.xxx.xxx.xxx"
- "kafka-2 kafka-2.acme.com:xxx.xxx.xxx.xxx"
- "kafka-3 kafka-3.acme.com:xxx.xxx.xxx.xxx"

volumes:
- ../confluent/control-center.properties:/etc/confluent-control-center/control-

→˓center.properties
environment:

env: "docker_env"
label: "testing"
host: "confluent-consumer-interceptor"

command: "/usr/bin/control-center-console-consumer /etc/confluent-control-center/
→˓control-center.properties --topic _confluent-monitoring"

Tip:

• You can include an hosts mapping in the docker-compose file to populate the /etc/hosts on the container, de-
pending on your Kafka brokers configuration, it might be required that the container knows how to communicate

2.2. Implementation & data collection 37

https://docs.docker.com/compose/install

telegraf-kafka Documentation, Release 1

with the brokers using their FQDN / host name for instance

• DNS resolution from the container is a potential root cause of failure so it is important you handle this configu-
ration properly

version: '3.8'
services:

confluent-interceptor:
image: confluentinc/cp-enterprise-control-center
restart: always
hostname: confluent-interceptor
mem_limit: 600m
extra_hosts:

- "kafka-1 kafka-1.acme.com:xxx.xxx.xxx.xxx"
- "kafka-2 kafka-2.acme.com:xxx.xxx.xxx.xxx"
- "kafka-3 kafka-3.acme.com:xxx.xxx.xxx.xxx"

Start the container:

docker-compose up -d

Shall the system be restarted, or the container be failing, Docker will automatically restart a new container.

After the image has been downloaded, the container automatically starts and metrics start to be forwarded to Splunk:

You can use the following search to verify that metrics are being ingested:

| mcatalog values(metric_name) values(_dims) where index=* metric_name=confluent_
→˓interceptor.* by index

You can as well use the msearch command:

| msearch index=* filter="metric_name="confluent_interceptor.*""

38 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

Troubleshoot Confluent Interceptor consumer

If you do not receive the metrics in Splunk, there can be different root causes:

• The Docker container started and stopped almost immediately, which is most certainly linked to the properties
configuration

• The command-center console consumer cannot access to Kafka due to configuration issues, network connectiv-
ity, DNS resolution, etc

• The connectivity between the Docker container and Splunk HTTP Event Collector is not valid

A first verification that can be done easily consists in disabling the Splunk logging driver to review the standard
and error output of the container and command-center:

Stop the container if it is running, then edit the configuration, remove, create amd start the container:

docker-compose stop confluent-interceptor
docker-compose rm -f confluent-interceptor

docker-compose.yml

version: '3.8'
services:

confluent-interceptor:
image: confluentinc/cp-enterprise-control-center
restart: always
hostname: confluent-interceptor
#logging:
driver: splunk
options:
splunk-token: "xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxx"
splunk-url: "https://mysplunk.domain.com:8088"
splunk-insecureskipverify: "true"

(continues on next page)

2.2. Implementation & data collection 39

telegraf-kafka Documentation, Release 1

(continued from previous page)

splunk-verify-connection: "false"
splunk-index: "confluent_interceptor_metrics"
splunk-sourcetype: "confluent_interceptor"
splunk-format: "raw"
tag: "{{.ImageName}}/{{.Name}}/{{.ID}}"
env: "env,label,host"
mem_limit: 600m
volumes:

- ../confluent/control-center.properties:/etc/confluent-control-center/control-
→˓center.properties

environment:
env: "docker_env"
label: "testing"
host: "confluent-consumer-interceptor"

command: "/usr/bin/control-center-console-consumer /etc/confluent-control-center/
→˓control-center.properties --topic _confluent-monitoring"

Then run the container in attached mode: (as opposed to daemon mode with the -d option)

docker-compose up confluent-interceptor

The container will output to stdout, any failure to start the console consumer due to a properties issues would appear
clearly:

Press Ctrl+C to stop the container

Creating template_docker_splunk_localhost_confluent-interceptor_1 ... done
Attaching to template_docker_splunk_localhost_confluent-interceptor_1
confluent-interceptor_1 | OpenJDK 64-Bit Server VM warning: Option
→˓UseConcMarkSweepGC was deprecated in version 9.0 and will likely be removed in a
→˓future release.
confluent-interceptor_1 | SLF4J: Class path contains multiple SLF4J bindings.
confluent-interceptor_1 | SLF4J: Found binding in [jar:file:/usr/share/java/acl/
→˓acl-6.0.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
confluent-interceptor_1 | SLF4J: Found binding in [jar:file:/usr/share/java/
→˓confluent-control-center/slf4j-log4j12-1.7.30.jar!/org/slf4j/impl/
→˓StaticLoggerBinder.class]
confluent-interceptor_1 | SLF4J: See http://www.slf4j.org/codes.html#multiple_
→˓bindings for an explanation.
confluent-interceptor_1 | SLF4J: Actual binding is of type [org.slf4j.impl.
→˓Log4jLoggerFactory]
confluent-interceptor_1 | WARNING: An illegal reflective access operation has
→˓occurred
confluent-interceptor_1 | WARNING: Illegal reflective access by com.google.
→˓inject.internal.cglib.core.$ReflectUtils$1 (file:/usr/share/java/acl/acl-6.0.0.jar)
→˓to method java.lang.ClassLoader.defineClass(java.lang.String,byte[],int,int,java.
→˓security.ProtectionDomain)
confluent-interceptor_1 | WARNING: Please consider reporting this to the
→˓maintainers of com.google.inject.internal.cglib.core.$ReflectUtils$1
confluent-interceptor_1 | WARNING: Use --illegal-access=warn to enable warnings
→˓of further illegal reflective access operations
confluent-interceptor_1 | WARNING: All illegal access operations will be denied
→˓in a future release
confluent-interceptor_1 | _confluent-monitoring 0 2020-10-18T14:05:57.
→˓771Z null {"clientType":"CONSUMER","clientId":"connector-consumer-sink-
→˓splunk-demo2-0","group":"connect-sink-splunk-demo2","session":"f0538df4-a9bd-458b-
→˓94f6-5d21c94f812d","sequence":"4","window":"0","timestamp":"1603029957771","topic":
→˓"kafka_demo","partition":0,"count":"0","aggregateBytes":"0","aggregateCrc":0,
→˓"totalLatency":"0","minLatency":"0","maxLatency":"0","samplePeriod":"15000","type":
→˓"HEARTBEAT","shutdown":false,"minWindow":"-1","maxWindow":"-1",
→˓"monitoringTopicPartition":0,"clusterId":"nBWbrPOaRbyE-2Wp0viUwA","clusterName":"",
→˓"arrivalTime":"0"}

(continues on next page)

40 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

(continued from previous page)

confluent-interceptor_1 | _confluent-monitoring 0 2020-10-18T14:06:00.
→˓033Z null {"clientType":"CONSUMER","clientId":"connector-consumer-sink-
→˓splunk-demo1-0","group":"connect-sink-splunk-demo1","session":"d18293d8-7f25-4b6c-
→˓bbfc-07a08efab9af","sequence":"7","window":"0","timestamp":"1603029960033","topic":
→˓"kafka_demo","partition":0,"count":"0","aggregateBytes":"0","aggregateCrc":0,
→˓"totalLatency":"0","minLatency":"0","maxLatency":"0","samplePeriod":"15000","type":
→˓"HEARTBEAT","shutdown":false,"minWindow":"-1","maxWindow":"-1",
→˓"monitoringTopicPartition":0,"clusterId":"nBWbrPOaRbyE-2Wp0viUwA","clusterName":"",
→˓"arrivalTime":"0"}
confluent-interceptor_1 | _confluent-monitoring 0 2020-10-18T14:06:04.
→˓652Z null {"clientType":"CONSUMER","clientId":"connector-consumer-sink-
→˓splunk-demo3-0","group":"connect-sink-splunk-demo3","session":"f0c0222c-a466-4b60-
→˓8497-7cb1d0ebfafc","sequence":"22","window":"0","timestamp":"1603029964652","topic":
→˓"kafka_demo_headers","partition":0,"count":"0","aggregateBytes":"0","aggregateCrc
→˓":0,"totalLatency":"0","minLatency":"0","maxLatency":"0","samplePeriod":"15000",
→˓"type":"HEARTBEAT","shutdown":false,"minWindow":"-1","maxWindow":"-1",
→˓"monitoringTopicPartition":0,"clusterId":"nBWbrPOaRbyE-2Wp0viUwA","clusterName":"",
→˓"arrivalTime":"0"}
^CGracefully stopping... (press Ctrl+C again to force)
Stopping template_docker_splunk_localhost_confluent-interceptor_1 ... done

In the output, raw metrics are:

| _confluent-monitoring 0 2020-10-18T14:05:57.771Z null {
→˓"clientType":"CONSUMER","clientId":"connector-consumer-sink-splunk-demo2-0","group":
→˓"connect-sink-splunk-demo2","session":"f0538df4-a9bd-458b-94f6-5d21c94f812d",
→˓"sequence":"4","window":"0","timestamp":"1603029957771","topic":"kafka_demo",
→˓"partition":0,"count":"0","aggregateBytes":"0","aggregateCrc":0,"totalLatency":"0",
→˓"minLatency":"0","maxLatency":"0","samplePeriod":"15000","type":"HEARTBEAT",
→˓"shutdown":false,"minWindow":"-1","maxWindow":"-1","monitoringTopicPartition":0,
→˓"clusterId":"nBWbrPOaRbyE-2Wp0viUwA","clusterName":"","arrivalTime":"0"}

If you can see metrics here, then the command center console consumer is able to bootstrap, access Kafka and
Zookeeper, and there are activity in the topic.

Note that if you have no consumers or producers with the Confluent interceptors enabled, there will be no metrics
generated here.

Disable command-center startup, keep the container running and exec into the container:

The next troubleshooting steps will allow you to enter the container and manually troubleshoot the startup of command
center.

To achieve this, we disable the command replaced by a tail which allows keeping the container ready for operations:

version: '3.8'
services:

confluent-interceptor:
image: confluentinc/cp-enterprise-control-center
restart: always
hostname: confluent-interceptor
#logging:
driver: splunk
options:
splunk-token: "xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxx"
splunk-url: "https://mysplunk.domain.com:8088"
splunk-insecureskipverify: "true"

(continues on next page)

2.2. Implementation & data collection 41

telegraf-kafka Documentation, Release 1

(continued from previous page)

splunk-verify-connection: "false"
splunk-index: "confluent_interceptor_metrics"
splunk-sourcetype: "confluent_interceptor"
splunk-format: "raw"
tag: "{{.ImageName}}/{{.Name}}/{{.ID}}"
env: "env,label,host"
mem_limit: 600m
volumes:

- ../confluent/control-center.properties:/etc/confluent-control-center/control-
→˓center.properties

environment:
env: "docker_env"
label: "testing"
host: "confluent-consumer-interceptor"

#command: "/usr/bin/control-center-console-consumer /etc/confluent-control-center/
→˓control-center.properties --topic _confluent-monitoring"

command: "tail -f /dev/null"

If the container is started, stop the container, then remove and create the container:

docker-compose stop confluent-interceptor
docker-compose rm -f confluent-interceptor

Start the container in daemon mode:

docker-compose up -d confluent-interceptor

Exec into the container:

docker-compose exec confluent-interceptor /bin/bash

Once you are in container, you can review the properties file as it seen by the container, make sure it contains the
proper required configuration:

cat /etc/confluent-control-center/control-center.properties

You can attempt to manually run command-center console consumer and review step by step any failure:

/usr/bin/control-center-console-consumer /etc/confluent-control-center/control-center.
→˓properties --topic _confluent-monitoring

Review carefully any failure.

Tip:

• By default, the exec command will make you enter the container as the relevant user “appuser”

• If you wish to access as root user instead, use the –user root argument in the exec command

docker-compose exec confluent-interceptor /bin/bash

For anymore troubleshooting related to command-center itself, consult:

• https://docs.confluent.io/current/control-center/installation/troubleshooting.html

42 Chapter 2. Deployment and configuration:

https://docs.confluent.io/current/control-center/installation/troubleshooting.html

telegraf-kafka Documentation, Release 1

If these steps are fine but you do not receive metrics in Splunk, there might a connectivity issue or misconfig-
uration on between the Docker container and Splunk, you can force the Docker logging driver to verify the
connectivty when starting up:

splunk-verify-connection: "true"

If the connectivty is not working, Docker will refuse to start the container.

2.2.16 Burrow Lag Consumers

As from their authors, Burrow is a monitoring companion for Apache Kafka that provides consumer lag check-
ing as a service without the need for specifying thresholds.

See: https://github.com/linkedin/Burrow

Burrow workflow diagram:

Burrow is a very powerful application that monitors all consumers (Kafka Connect connectors, Kafka
Streams. . .) to report an advanced state of the service automatically, and various useful lagging metrics.

Telegraf has a native input for Burrow which polls consumers, topics and partitions lag metrics and statuses
over http, use the following telegraf minimal configuration:

See: https://github.com/influxdata/telegraf/tree/master/plugins/inputs/burrow

[global_tags]
the env tag is used by the application for multi-environments management

(continues on next page)

2.2. Implementation & data collection 43

https://github.com/linkedin/Burrow
https://github.com/influxdata/telegraf/tree/master/plugins/inputs/burrow

telegraf-kafka Documentation, Release 1

(continued from previous page)

env = "my_env"
the label tag is an optional tag used by the application that you can use as

→˓additional label for the services or infrastructure
label = "my_env_label"

[agent]
interval = "10s"
flush_interval = "10s"
hostname = "$HOSTNAME"

outputs
[[outputs.http]]

url = "https://splunk:8088/services/collector"
insecure_skip_verify = true
data_format = "splunkmetric"
Provides time, index, source overrides for the HEC

splunkmetric_hec_routing = true
Additional HTTP headers
[outputs.http.headers]

Should be set manually to "application/json" for json data_format
Content-Type = "application/json"
Authorization = "Splunk 205d43f1-2a31-4e60-a8b3-327eda49944a"
X-Splunk-Request-Channel = "205d43f1-2a31-4e60-a8b3-327eda49944a"

Burrow

[[inputs.burrow]]
Burrow API endpoints in format "schema://host:port".
Default is "http://localhost:8000".
servers = ["http://dockerhost:9001"]

Override Burrow API prefix.
Useful when Burrow is behind reverse-proxy.
api_prefix = "/v3/kafka"

Maximum time to receive response.
response_timeout = "5s"

Limit per-server concurrent connections.
Useful in case of large number of topics or consumer groups.
concurrent_connections = 20

Filter clusters, default is no filtering.
Values can be specified as glob patterns.
clusters_include = []
clusters_exclude = []

Filter consumer groups, default is no filtering.
Values can be specified as glob patterns.
groups_include = []
groups_exclude = []

Filter topics, default is no filtering.
Values can be specified as glob patterns.
topics_include = []
topics_exclude = []

(continues on next page)

44 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

(continued from previous page)

Credentials for basic HTTP authentication.
username = ""
password = ""

Optional SSL config
ssl_ca = "/etc/telegraf/ca.pem"
ssl_cert = "/etc/telegraf/cert.pem"
ssl_key = "/etc/telegraf/key.pem"
insecure_skip_verify = false

Visualization of metrics within the Splunk metrics workspace application:

Using mcatalog search command to verify data availability:

| mcatalog values(metric_name) values(_dims) where index=* metric_name=burrow_*

2.3 Docker testing templates

Docker compose templates are provided in the following repository:

https://github.com/guilhemmarchand/kafka-docker-splunk

Using the docker templates allows you to create a full pre-configured Kafka environment with docker, just in
30 seconds.

Example:

• Zookeeper cluster (3 nodes)

• Kafka broker cluster (3 nodes)

• Kafka connect cluster (1 node, can be extended up to 3 or more with additional config)

• Confluent schema-registry

• Confluent kafka-rest

• Confluent ksql-server

2.3. Docker testing templates 45

https://github.com/guilhemmarchand/kafka-docker-splunk

telegraf-kafka Documentation, Release 1

• Kafka Xinfra SLA monitor container

• Telegraf container polling and sending to your Splunk metric store

• Yahoo Kafka Manager

• Confluent Interceptor console collector

• Kafka Burrow Consumer lag Monitoring

46 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

Start the template, have a very short coffee (approx. 30 sec), open Splunk, install the Metrics workspace app
and observe the magic happening !

2.3. Docker testing templates 47

telegraf-kafka Documentation, Release 1

2.4 Splunk dashboards (health views)

2.4.1 Overview (landing page)

The Splunk application home page provides an overview of the Kafka infrastructure:

By default, all Kafka components including Confluent components are shown in the Overview page.

Shall a component be not detected, an informational panel replaces the metric related panel.

A configuration user interface is available in the app menu bar:

48 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

• Settings / Management of enable components

Use this user interface to enable or disable any of the components depending on your needs:

2.4.2 Overview Brokers

The Brokers overview page inspired from Yahoo Kafka manager exposes the Kafka brokers and main metrics:

Broker drilldown page:

2.4. Splunk dashboards (health views) 49

telegraf-kafka Documentation, Release 1

2.4.3 Overview Topics

The Topics overview page inspired from Yahoo Kafka manager exposes the Kafka topics and main metrics:

Topic drilldown page:

50 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

2.4.4 Zookeeper dashboard view

2.4. Splunk dashboards (health views) 51

telegraf-kafka Documentation, Release 1

2.4.5 Kafka broker dashboard view

52 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

2.4. Splunk dashboards (health views) 53

telegraf-kafka Documentation, Release 1

54 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

2.4. Splunk dashboards (health views) 55

telegraf-kafka Documentation, Release 1

56 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

2.4.6 Kafka topic dashboard view

2.4. Splunk dashboards (health views) 57

telegraf-kafka Documentation, Release 1

58 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

2.4.7 Kafka connect dashboard view

2.4. Splunk dashboards (health views) 59

telegraf-kafka Documentation, Release 1

60 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

2.4. Splunk dashboards (health views) 61

telegraf-kafka Documentation, Release 1

2.4.8 Kafka connect sink task dashboard view

62 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

2.4. Splunk dashboards (health views) 63

telegraf-kafka Documentation, Release 1

2.4.9 Kafka connect source task dashboard view

64 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

2.4. Splunk dashboards (health views) 65

telegraf-kafka Documentation, Release 1

2.4.10 Confluent Interceptors Monitoring

66 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

2.4.11 Confluent schema-registry dashboard view

2.4. Splunk dashboards (health views) 67

telegraf-kafka Documentation, Release 1

2.4.12 Xinfra Kafka monitor view

68 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

2.4.13 Burrow Kafka Consumers lagging view

2.4. Splunk dashboards (health views) 69

telegraf-kafka Documentation, Release 1

70 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

2.5 Splunk Connected experience for Cloud Gateway

Connected experience dashboards are builtin dashboards optimised for visualization on Splunk Mobile and
Splunk TV with Splunk Cloud gateway:

https://docs.splunk.com/Documentation/Mobile

Using Splunk Cloud Gateway and the Connected Experience dashboards, you can easily send data to your mobile
Apple TV and device users with compatible and optimized dashboards.

Screenshots from some of the Connected Experience dashboards in Apple Iphone devices:

2.5. Splunk Connected experience for Cloud Gateway 71

https://docs.splunk.com/Documentation/Mobile

telegraf-kafka Documentation, Release 1

2.5.1 Access the Connected Experience dashboards

The builtin Connected Experience dashboards are available from the “Connected Experience” menu in the Splunk
application:

Although these dashboards are specially designed for the Splunk Connected experience, these are entirely compatible
with Splunk Web:

72 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

For these dashboards to be available from your Apple devices, the builtin permissions share the dashboards to the
global level of the Splunk search instance(s). (See metadata/default.meta)

2.5.2 Deploy and configure Splunk Cloud Gateway

Download, install and configure the Splunk Cloud Gateway application in your environment:

https://splunkbase.splunk.com/app/4250/

Once you configured Splunk Cloud Gateway and registered a device, you can search for the Kafka Connected Experi-
ence dashboards:

2.5. Splunk Connected experience for Cloud Gateway 73

https://splunkbase.splunk.com/app/4250/

telegraf-kafka Documentation, Release 1

Open any of the dashboards to start your amazing Splunk Connected journey!

2.5.3 Send to mobile alert action

With Splunk Mobile and Splunk Cloud Gateway, you can configure a Kafka alert to send a notification to your apple
device, and link with the dashboard of your choice:

https://docs.splunk.com/Documentation/Alerts/latest/Alerts/SendAlerts

The application provides a builtin “kafka_admin” role that we suggest you use for Kafka alerting, make sure the
users that should receive the Kafka alert notifications are members of the role.

74 Chapter 2. Deployment and configuration:

https://docs.splunk.com/Documentation/Alerts/latest/Alerts/SendAlerts

telegraf-kafka Documentation, Release 1

Shall an alert trigger, a notification will be sent to the members of the kafka_admin role that have a registered device:

2.5.4 Create custom dashboards included in the menu

Because there are limitations in Connected Experience dashboards, you might need to create your own versions if for
example you have to manage multiple environments.

2.5. Splunk Connected experience for Cloud Gateway 75

telegraf-kafka Documentation, Release 1

If you need to create custom versions, achieve the following:

• Clone the dashboard you want to customize and make sure the id of the dashboard starts by “cloudgw_”

• Any dashboard starting by “cloudgw_” will automatically be included within the Connected Experience menu

• Modify the dashboard based on your requirements, to focus on a given environment replace any occurrence of
env=* label=* according to the target

• Make sure to clone the existing permissions of the dashboard, or share the dashboard to all apps to allow it to be
visible from the mobile app

2.6 Kafka infrastructure OOTB alerting

The application provides out of the box alerting for all the components of the Kafka and Confluent infrastructure.

Go to app menu / Settings / Management of Kafka alerting:

2.6.1 Management of Kafka alerting (user interface)

The OOTB alerting model relies on several KVstore collections being automatically populated, the user inter-
face “Management of Kafka alerting” allows you to interact easily with different aspects of the monitoring:

76 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

KVstore collections and lookup definitions

The alerting framework relies on several KVstore collections and associated lookup definitions:

Purpose KVstore collection Lookup definition
Monitoring per component en-
tity

kv_telegraf_kafka_inventory kafka_infra_inventory

Monitoring per nodes number kv_kafka_infra_nodes_inventory kafka_infra_nodes_inventory
Monitoring of Kafka topics kv_telegraf_kafka_topics_monitoring kafka_topics_monitoring
Monitoring per component en-
tity

kv_telegraf_kafka_connect_tasks_monitoringkafka_connect_tasks_monitoring

Monitoring per Burrow con-
sumers

kv_kafka_burrow_consumers_monitoring kafka_burrow_consumers_monitoring

Maintenance mode manage-
ment

kv_telegraf_kafka_alerting_maintenance kafka_alerting_maintenance

Permissions and authorizations

Managing the alerting framework and its objects require KVstore collection and lookup definition write permissions.

You can rely on the builtin role kafka_admin and configure your Kafka administrators to be member of the role.

The role provides the level of permissions required to administrate the KVstore collections.

Shall an unauthorized user attempt to perform an operation, or access to an object that is no readable, the following
type of error window will be showed:

2.6. Kafka infrastructure OOTB alerting 77

telegraf-kafka Documentation, Release 1

Maintenance mode

All alerts are by default driven by the status of the maintenance mode stored in a KVstore collection.

Shall the maintenance be enabled by an administrator, Splunk will continue to run the schedule alerts but none of them
will be able to trigger during the maintenance time window.

When the end of maintenance time window is reached, its state will be automatically disabled and alerts will be able
to trigger again.

A maintenance time window can start immediately, or be automatically automatically scheduled according to your
selection.

Enabling the maintenance mode

• Click on the enable maintenance mode button:

• Within the modal configuration window, enter the date and hours of the end of the maintenance time window:

78 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

• When the date and hours of the maintenance time window are reached, the scheduled report “Verify Kafka
alerting maintenance status” will automatically disable the maintenance mode.

• If a start date time different than the current time is selected (default), this action will automatically schedule
the maintenance time window.

Disabling the maintenance mode

During any time of the maintenance time window, an administrator can decide to disable the maintenance mode:

Scheduling a maintenance window

You can configure the maintenance mode to be automatically enabled between a specific date time that you enter in
the UI.

• When the end time is reached, the maintenance mode will automatically be disable, and the alerting will return
to normal operations.

2.6. Kafka infrastructure OOTB alerting 79

telegraf-kafka Documentation, Release 1

• When a maintenance mode window has been scheduled, the UI shows a specific message with the starts / ends
on dates:

The collection KVstore endpoint can be programmatically managed, as such it is easily possible to reproduce this
behaviour from an external system.

(https://docs.splunk.com/Documentation/Splunk/latest/RESTREF/RESTkvstore)

Monitoring state default definition

When new objects are automatically discovered such as Kafka components or topics, these objects are added to the
different KVstore collection with a default enabled maintenance mode.

The default maintenance mode that is applied on a per type of object basis can be customised via the associated macros
definitions:

80 Chapter 2. Deployment and configuration:

https://docs.splunk.com/Documentation/Splunk/latest/RESTREF/RESTkvstore

telegraf-kafka Documentation, Release 1

Purpose Macro definition
Type of component (nodes number monitoring) zookeeper_default_monitoring_state
Zookeeper nodes zookeeper_default_monitoring_state
Kafka Brokers kafka_broker_default_monitoring_state
Kafka Topics kafka_topics_default_monitoring_state
Kafka Connect workers kafka_connect_default_monitoring_state
Kafka Connect connectors kafka_connect_tasks_default_monitoring_state
Kafka Burrow group consumers kafka_burrow_consumers_default_monitoring_state
Confluent Schema registry schema_registry_default_monitoring_state
Confluent ksql-server ksql_server_default_monitoring_state
Confluent kafka-rest kafka_rest_default_monitoring_state
LinkedIn kafka-monitor kafka_monitor_default_monitoring_state

The default macro definition does the following statement:

eval monitoring_state="enabled"

A typical customisation can be to disable by default the monitoring state for non Production environments:

eval monitoring_state=if(match(env, "(?i)PROD"), "enabled", "disabled")

Such that if a new object is discovered for a development environment, this will not be monitored unless a manual
update is performed via the user configuration interface.

Administrating collection entries

Each type of component can be administrated in a dedicated tab within the user management interface.

When objects have been discovered, the administrator can eventually search for an object, and click on the object
definition, which opens the modal interaction window:

The modal interaction window provides information about this object, and different action buttons depending on this
type of object:

2.6. Kafka infrastructure OOTB alerting 81

telegraf-kafka Documentation, Release 1

Enable/Disabling monitoring state

When an object has a disabled monitoring state, the button “enable monitoring” is automatically made available:

When an object has an enabled monitoring state, the button “disable monitoring” is automatically made available:

82 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

Shall the action be requested and confirmed, the object state will be updated, and the table exposing the object defini-
tion be refreshed.

Deleting objects in the collection

An object that was discovered and added to the collection automatically can be deleted via the UI:

2.6. Kafka infrastructure OOTB alerting 83

telegraf-kafka Documentation, Release 1

Shall the action be requested and confirmed, the object state will be entirely removed from the collection, and the table
exposing the object definition be refreshed.

Important:

By default, objects are discovered every 4 hours looking at metrics available for the last 4 hours.

This means that if the object has been still generated metrics to Splunk, it will be re-created automatically by the
workflow.

To avoid having to re-delete the same object again, you should wait 4 hours minimum before purging the object that
was decommissioned.

Finally, note that if an object has not been generating metrics for a least 24 hours, its monitoring state will be disabled
a special “disabled_autoforced” value.

This state can still be manually updated via the UI, to permanently re-enable or disable the monitoring state if the
component is still an active component.

Modifying an object in the collection

Depending on the type of object, the modal interaction window can provide a modification button:

84 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

The type of modification that can be applied depends on type of component, example:

2.6. Kafka infrastructure OOTB alerting 85

telegraf-kafka Documentation, Release 1

Manually request a collection update job

A collection update can be requested at any time within the UI:

Shall the action be requested and confirmed, the UI will automatically run the object discovery report, any new object
that was not yet discovered since the last run of the report, will be added to the collection and made available within
the UI.

Once the job has run, click on the refresh button:

86 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

Enable/Disabling monitoring state

When an object has a disabled monitoring state, the button “enable monitoring” is automatically made available:

When an object has an enabled monitoring state, the button “disable monitoring” is automatically made available:

2.6. Kafka infrastructure OOTB alerting 87

telegraf-kafka Documentation, Release 1

Shall the action be requested and confirmed, the object state will be updated, and the table exposing the object defini-
tion be refreshed.

Deleting objects in the collection

An object that was discovered and added to the collection automatically can be deleted via the UI:

88 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

Shall the action be requested and confirmed, the object state will be entirely removed from the collection, and the table
exposing the object definition be refreshed.

Important:

By default, objects are discovered every 4 hours looking at metrics available for the last 4 hours.

This means that is the object has been still generated metrics to Splunk, it will be re-created automatically by the
workflow.

To avoid having to re-delete the same object again, you should wait 4 hours minimum before purging the object that
was decommissioned.

Finally, note that if an object has not been generating metrics for a least 24 hours, its monitoring state will be disabled
a special “disabled_autoforced” value.

This state can still be manually updated via the UI, to permanently re-enable or disable the monitoring state if the
component is still an active component.

Modifying an object in the collection

Depending on the type of object, the modal interaction window can provide a modification button:

2.6. Kafka infrastructure OOTB alerting 89

telegraf-kafka Documentation, Release 1

The type of modification that can be applied depends on type of component, example:

90 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

Manually request a collection update job

A collection update can be requested at any time within the UI:

Shall the action be requested and confirmed, the UI will automatically run the object discovery report, any new object
that was not yet discovered since the last run of the report, will be added to the collection and made available within
the UI.

Once the job has run, click on the refresh button:

2.6. Kafka infrastructure OOTB alerting 91

telegraf-kafka Documentation, Release 1

Shall the job fail for some reasons such as a lack of permissions, an error window with the Splunk error message
would be exposed automatically.

Manually request a collection rebuild job

A collection reset can be requested at any time within the UI:

Important: When requesting a reset of the collection, all changes will be irremediably lost. All matching objects will
be reset to their default discovered values.

Shall the action be requested and confirmed, the UI will automatically run the object discovery report, any new object
that was not yet discovered since the last run of the report, will be added to the collection and made available within
the UI.

92 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

Once the job has run, click on the refresh button:

Shall the job fail for some reasons such as a lack of permissions, an error window with the Splunk error message
would be exposed automatically.

2.6.2 Enabling OOTB alerts

Important: By default, all alerts are disabled, you must enable the alerts within Splunk Web depending on your
needs.

You need to decide which alert must be enabled depending on your needs and environments, and achieve any additional
alert actions that would be required such as creating an incident in a ticketing system.

Splunk alerts can easily be extended by alert actions.

2.6. Kafka infrastructure OOTB alerting 93

telegraf-kafka Documentation, Release 1

Alert configuration summary user interface

The summary alert tab exposes most valuable information about the alerts, and provides a shortcut access to
the management of the alerts:

Click on any alert to open the modal interaction window:

Click on the “Review and edit alert” button to open the Splunk alert configuration UI for this alert:

94 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

Click on the “Search alert history” button to automatically open a search against the triggering history for this
alert

Stale metrics life test by component

Life test monitoring alerts perform a verification of the metric availability to alert on a potential downtime or
issue with a component.

• Kafka monitoring - [component] - stale metrics life test

Once activated, stale metrics alert verify the grace period to be applied, and the monitoring state of the compo-
nent from the KVstore collection.

Alerts can be controlled by changing values of the fields:

• grace_period: The grace value in seconds before assuming a severe status (difference in seconds between the
last communication and time of the check)

• monitoring_state: A value of “enabled” activates verification, any other value disables it

2.6. Kafka infrastructure OOTB alerting 95

telegraf-kafka Documentation, Release 1

Stale metrics life test by number of nodes per type of component

If you are running the Kafka components in a container based architecture, you can monitor your infrastruc-
ture availability by monitoring the number of active nodes per type of component.

As such, you will be monitoring how many nodes are active at a time, rather than specific nodes identities which will
change with the life cycle of the containers.

• All Kafka components - active node numbers - stale metrics life test

Shall an upgrade of a statefullSet or deployment in Kubernetes fail and new containers fail to start, the OOTB alerting
will report this bad condition on per type of component basis.

Kafka brokers monitoring

The following alerts are available to monitor the main and most important aspects of Kafka Broker clusters:

• Abnormal number of Active Controllers

• Offline or Under-replicated partitions

• Failed producer or consumer was detected

• ISR Shrinking detection

Kafka topics monitoring

The following alerts are available to monitor Kafka topics:

• Under-replicated partitions detected on topics

• Errors reported on topics (bytes rejected, failed fetch requests, failed produce requests)

Kafka Connect task monitoring

Alerts are available to monitor the state of connectors and tasks for Kafka Connect:

• Kafka monitoring - Kafka Connect - tasks status monitoring

Alerts can be controlled by changing values of the fields:

• grace_period: The grace value in seconds before assuming a severe status (difference in seconds between the
last communication and time of the check)

• monitoring_state: A value of “enabled” activates verification, any other value disables it

Kafka Consumers monitoring with Burrow

Alerts are available to monitor and report the state of Kafka Consumers via Burrow:

• Kafka monitoring - Burrow - group consumers state monitoring

Alerts can be controlled by changing values of the fields:

• monitoring_state: A value of “enabled” activates verification, any other value disables it

Notes: Kafka Connect source and sink connectors depending on their type are as well consumers, Burrow will monitor
the way the connectors behave by analysing their lagging metrics and type of activity, this is a different, complimentary
and advanced type of monitoring than analysing the state of the tasks.

96 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

2.6.3 Programmatic access and interactions with external systems

Requirements and recommendations

• Create a Splunk service account user that is member of the builtin kafka_admin role

• The builtin kafka_admin role provides read and write permission to the different KVstore collections

• Make sure splunkd REST API is reachable from your external tool

References

• http://dev.splunk.com/view/webframework-developapps/SP-CAAAEZG

• https://docs.splunk.com/Documentation/Splunk/latest/RESTREF/RESTprolog

• https://docs.splunk.com/Documentation/Splunk/latest/RESTTUT/RESTandCloud

• https://www.urlencoder.org/ (example online tool to URIencode / decode)

For convenience of the documentation bellow

export splunk_url="localhost:8089"

Authentication

For Splunk prior to 7.3.x

The recommended approach is authentication to Splunk API via a token, see:

Official documentation: Splunk docs API token.

Example authenticating with a user called svc_kafka that is member of the kafka_admin role:

curl -k https://$splunk_url/services/auth/login --data-urlencode username=svc_kafka --
→˓data-urlencode password=pass

<response>
<sessionKey>DWGNbGpJgSj30w0GxTAxMj8t0dZKjvjxLYaP^yphdluFN_FGz4gz^

→˓NhcgPCLDkjWH3BUQa1Vewt8FTF8KXyyfI09HqjOicIthMuBIB70dVJA8Jg</sessionKey>
<messages>
<msg code=""></msg>

</messages>
</response>

export token="DWGNbGpJgSj30w0GxTAxMj8t0dZKjvjxLYaP^yphdluFN_FGz4gz^
→˓NhcgPCLDkjWH3BUQa1Vewt8FTF8KXyyfI09HqjOicIthMuBIB70dVJA8Jg"

A token remains valid for the time of a session, which is by default valid for 1 hour.

For Splunk 7.3.0 and later

Splunk 7.3.0 introduced the usage of proper authentication tokens, which is the recommended way to authenticate
against splunkd API:

2.6. Kafka infrastructure OOTB alerting 97

http://dev.splunk.com/view/webframework-developapps/SP-CAAAEZG
https://docs.splunk.com/Documentation/Splunk/latest/RESTREF/RESTprolog
https://docs.splunk.com/Documentation/Splunk/latest/RESTTUT/RESTandCloud
https://www.urlencoder.org/
https://docs.splunk.com/Documentation/Splunk/latest/RESTUM/RESTusing#Authentication_and_authorization

telegraf-kafka Documentation, Release 1

Official documentation: Splunk docs JSON authentication token.

Once you have created an authentication token for the user to be used as the service account, using curl specify the
bearer token:

curl -k -H "Authorization: Bearer <token>"

Maintenance mode management

Get the current maintenance mode status

For Splunk 7.3.0 and later, replace with –H “Authorization: Bearer <token>”

curl -k -H "Authorization: Splunk $token" \
https://$splunk_url/servicesNS/nobody/telegraf-kafka/storage/collections/data/kv_

→˓telegraf_kafka_alerting_maintenance

Enabling the maintenance mode

Enabling the maintenance mode requires:

• a first operation that flushed any record of the KVstore collection

• a value for the end of the maintenance period in epochtime (field maintenance_mode_end)

• the current time in epochtime (field time_updated)

Example: Enable the maintenance mode till the 11 of May 2019 at 9.pm

For Splunk 7.3.0 and later, replace with –H “Authorization: Bearer <token>”

curl -k -H "Authorization: Splunk $token" -X DELETE \
https://$splunk_url/servicesNS/nobody/telegraf-kafka/storage/collections/data/kv_

→˓telegraf_kafka_alerting_maintenance

curl -k -H "Authorization: Splunk $token" \
https://$splunk_url/servicesNS/nobody/telegraf-kafka/storage/collections/data/kv_

→˓telegraf_kafka_alerting_maintenance \
-H 'Content-Type: application/json' \
-d '{"maintenance_mode": "enabled", "maintenance_mode_end": "1557565200", "time_

→˓updated": "1557509578"}'

Disabling the maintenance mode

Disabling the maintenance mode requires:

• a first operation that flushed any record of the KVstore collection

• the current time in epochtime (field time_updated)

For Splunk 7.3.0 and later, replace with –H “Authorization: Bearer <token>”

curl -k -H "Authorization: Splunk $token" -X DELETE \
https://$splunk_url/servicesNS/nobody/telegraf-kafka/storage/collections/data/kv_

→˓telegraf_kafka_alerting_maintenance

(continues on next page)

98 Chapter 2. Deployment and configuration:

https://docs.splunk.com/Documentation/Splunk/latest/Security/UseAuthTokens

telegraf-kafka Documentation, Release 1

(continued from previous page)

curl -k -H "Authorization: Splunk $token" \
https://$splunk_url/servicesNS/nobody/telegraf-kafka/storage/collections/data/kv_

→˓telegraf_kafka_alerting_maintenance \
-H 'Content-Type: application/json' \
-d '{"maintenance_mode": "disabled", "maintenance_mode_end": "", "time_updated":

→˓"1557509578"}'

Kafka Connect task monitoring management

Retrieve all the records from the KVstore

For Splunk 7.3.0 and later, replace with –H “Authorization: Bearer <token>”

curl -k -H "Authorization: Splunk $token" \
https://$splunk_url/servicesNS/nobody/telegraf-kafka/storage/collections/data/kv_

→˓telegraf_kafka_connect_tasks_monitoring

Request tasks inventory update: automatically Add any new task to the collection

For Splunk 7.3.0 and later, replace with –H “Authorization: Bearer <token>”

curl -k -H "Authorization: Splunk $token" https://$splunk_url/servicesNS/nobody/
→˓telegraf-kafka/search/jobs -d search="| savedsearch \"Update Kafka Connect tasks
→˓inventory\""

Create a new connector to be monitored

Create a new connector entry which enables monitoring for the connector, with recommended fields (env, label,
connector, role):

Example:

{"env": "docker_env", "label": "testing", "connector": "kafka-connect-my-connector",
→˓"role": "kafka_sink_task", "monitoring_state": "enabled", "grace_period": "300"}

For Splunk 7.3.0 and later, replace with –H “Authorization: Bearer <token>”

curl -k -H "Authorization: Splunk $token" \
https://$splunk_url/servicesNS/nobody/telegraf-kafka/storage/collections/data/kv_

→˓telegraf_kafka_connect_tasks_monitoring \
-H 'Content-Type: application/json' \
-d '{"env": "docker_env", "label": "testing", "connector": "kafka-connect-my-

→˓connector", "role": "kafka_sink_task", "monitoring_state": "enabled", "grace_period
→˓": "300"}'

Get the entries for a specific connector

example:

2.6. Kafka infrastructure OOTB alerting 99

telegraf-kafka Documentation, Release 1

query={"env": "docker_env", "label": "testing", "connector": "kafka-connect-my-
→˓connector"}

Encode the URL and use a query:

Notes: URI encode everything after the “query=”

For Splunk 7.3.0 and later, replace with –H “Authorization: Bearer <token>”

curl -k -H "Authorization: Splunk $token" \
https://$splunk_url/servicesNS/nobody/telegraf-kafka/storage/collections/data/kv_

→˓telegraf_kafka_connect_tasks_monitoring?query=%7B%22connector%22%3A%20%22kafka-
→˓connect-my-connector%22%7D

Delete a Kafka connector

Delete the record with the key ID ” 5410be5441ba15298e4624d1”:

For Splunk 7.3.0 and later, replace with –H “Authorization: Bearer <token>”

curl -k -H "Authorization: Splunk $token" -X DELETE \
https://$splunk_url/servicesNS/nobody/telegraf-kafka/storage/collections/data/kv_

→˓telegraf_kafka_connect_tasks_monitoring/5410be5441ba15298e4624d1

Deactivating the monitoring state of a connector

Using a search triggered via rest call: (a different method is possible by altering the record, see after)

For Splunk 7.3.0 and later, replace with –H “Authorization: Bearer <token>”

curl -k -H "Authorization: Splunk $token" https://$splunk_url/servicesNS/nobody/
→˓telegraf-kafka/search/jobs -d search="| inputlookup kafka_connect_tasks_monitoring
→˓| search env=\"docker_env\" label=\"testing\" connector=\"kafka-connect-syslog\" |
→˓eval monitoring_state=\"disabled\" | outputlookup kafka_connect_tasks_monitoring
→˓append=t key_field=_key"

Or using a rest call (all wanted fields have to be mentioned):

• get the key ID, and if required get the current value of every field to be preserved

For Splunk 7.3.0 and later, replace with –H “Authorization: Bearer <token>”

curl -k -H "Authorization: Splunk $token" \
https://$splunk_url/servicesNS/nobody/telegraf-kafka/storage/collections/data/kv_

→˓telegraf_kafka_connect_tasks_monitoring/5cd5a890e3b965791163eb71 \
-H 'Content-Type: application/json' \
-d '{"env": "docker_env", "label": "testing", "connector": "kafka-connect-my-

→˓connector", "role": "kafka_sink_task", "monitoring_state": "disabled", "grace_period
→˓": "300"}'

Activating the monitoring state of a connector

Using a search triggered via rest call: (a different method is possible by altering the record, see after)

For Splunk 7.3.0 and later, replace with –H “Authorization: Bearer <token>”

100 Chapter 2. Deployment and configuration:

telegraf-kafka Documentation, Release 1

curl -k -H "Authorization: Splunk $token" https://$splunk_url/servicesNS/nobody/
→˓telegraf-kafka/search/jobs -d search="| inputlookup kafka_connect_tasks_monitoring
→˓| search env=\"docker_env\" label=\"testing\" connector=\"kafka-connect-syslog\" |
→˓eval monitoring_state=\"enabled\" | outputlookup kafka_connect_tasks_monitoring
→˓append=t key_field=_key"

Or using a rest call (all wanted fields have to be mentioned):

• get the key ID, and if required get the current value of every field to be preserved

For Splunk 7.3.0 and later, replace with –H “Authorization: Bearer <token>”

curl -k -H "Authorization: Splunk $token" \
https://$splunk_url/servicesNS/nobody/telegraf-kafka/storage/collections/data/kv_

→˓telegraf_kafka_connect_tasks_monitoring/5cd5a890e3b965791163eb71 \
-H 'Content-Type: application/json' \
-d '{"env": "docker_env", "label": "testing", "connector": "kafka-connect-my-

→˓connector", "role": "kafka_sink_task", "monitoring_state": "enabled", "grace_period
→˓": "300"}'

Delete a connector

example:

query={"env": "docker_env", "label": "testing", "connector": "kafka-connect-my-
→˓connector"}

Encode the URL and use a query:

Notes: URI encode everything after the “query=”

For Splunk 7.3.0 and later, replace with –H “Authorization: Bearer <token>”

curl -k -H "Authorization: Splunk $token" \
https://$splunk_url/servicesNS/nobody/telegraf-kafka/storage/collections/data/kv_

→˓telegraf_kafka_connect_tasks_monitoring?query=%7B%22connector%22%3A%20%22kafka-
→˓connect-my-connector%22%7D

Delete the record using the key ID:

For Splunk 7.3.0 and later, replace with –H “Authorization: Bearer <token>”

curl -k -H "Authorization: Splunk $token" -X DELETE \
https://$splunk_url/servicesNS/nobody/telegraf-kafka/storage/collections/data/kv_

→˓telegraf_kafka_connect_tasks_monitoring/5410be5441ba15298e4624d1

2.6. Kafka infrastructure OOTB alerting 101

telegraf-kafka Documentation, Release 1

102 Chapter 2. Deployment and configuration:

CHAPTER 3

Troubleshoot:

3.1 Troubleshoot & FAQ

3.1.1 No metrics data could be found

Shall the application not be able to find any Kafka metrics in Splunk in respect with your configuration, the Overview
landing page will show the following modal message:

Root causes can be:

• No metrics could be collected by Telegraf

• Telegraf cannot send the metrics to your Splunk HEC endpoint

• The index name differs from the default “telegraf_kafka” index and the macro “telegraf_kafka_index” was not
customised

103

telegraf-kafka Documentation, Release 1

• Telegraf configuration does not provide a value for env and label tags

3.1.2 Unsupported configuration detected in tags

The value for env and label tags must not contain any white spaces or tabs to avoid token exchange issues in the
dashboard navigation.

Shall this be the case, a modal error window will open automatically when opening the Overview page:

If this happens, then your Telegraf tags are incorrect, fix your telegraf.conf configuration files, example:

[global_tags]
the env tag is used by the application for multi-environments management
env = "docker_env"
the label tag is an optional tag used by the application that you can use as

→˓additional label for the services or infrastructure
label = "testing_env"

Once the fix has been applied properly, the error message will disappear.

104 Chapter 3. Troubleshoot:

CHAPTER 4

Versioniong and build history:

4.1 Release notes

4.1.1 Version 1.1.41

• Change: JQuery simple XML dashboard update

4.1.2 Version 1.1.40

• Fix: OS MAIN KPIs file-system usage bar style missing in some builtin views

Version 1.1.39

• Feature: Improvements on Confluent Interceptor UI and related Overview page subcomponents

• Feature: OS Main KPIs views in each component dashboard

• Change: navigation bar review

Version 1.1.38

• Feature: Integration with Confluent Interceptor Monitoring for producers and consumers advanced lag monitor-
ing with Confluent

• Change: Kafka Smart Monitoring goes Dark theme!

• Change: When no Kafka Connect source or sink connector have been detected, show the aggregated single form
in black rather than yellow

• Fix: Issue #64 - mMissing double quotes in the flush interval telegraf config UI generator #64

• Fix: Issue #66 - Missing dot in telegraf config for Kafka Connect #66

105

telegraf-kafka Documentation, Release 1

• Fix: Issue #67 - Bad image file path in broker view #67

Version 1.1.37

CAUTION: Zookeeper metric collection switches from Telegraf plugin to JMX for easier and more consistent metric
collection across all the components. If you were using the application prior to this version, please update your
configuration to collect metrics via JMX.

See: https://telegraf-kafka.readthedocs.io/en/latest/implementation.html

• Fix: Show Kafka Connect tasks return empty results in home page

• Fix: The usage of unit makes single form content way too small in different views

Version 1.1.36

CAUTION: Zookeeper metric collection switches from Telegraf plugin to JMX for easier and more consistent metric
collection across all the components. If you were using the application prior to this version, please update your
configuration to collect metrics via JMX.

See: https://telegraf-kafka.readthedocs.io/en/latest/implementation.html

• Fix: Avoid mcatalog calls with metric_name as metric_name, some versions of Splunk will incorrectly complain
about this, and this causes appinpsect failures in Splunk Base

Version 1.1.35

CAUTION: Zookeeper metric collection switches from Telegraf plugin to JMX for easier and more consistent metric
collection across all the components. If you were using the application prior to this version, please update your
configuration to collect metrics via JMX.

See: https://telegraf-kafka.readthedocs.io/en/latest/implementation.html

• change: Zookeeper metric collection switches from Telegraf plugin to JMX collection via Jolokia Telegraf input

• fix: Topic entity dashboard should break by topic rather than per broker, fix aggregation when any selected

• fix: Burrow does not show up in Overview page

• fix: Telegraf configuration helper UI is broken, and update for Zookeeper collection

• fix: appinspect warnings

• fix: Increase time range of searches in Overview page to better cover longer time between measures

• fix: Kafka Connect connectors discovery does not preserve a non default monitoring_state

Version 1.1.34

• unpublished

Version 1.1.33

CAUTION: Zookeeper metric collection switches from Telegraf plugin to JMX for easier and more consistent metric
collection across all the components. If you were using the application prior to this version, please update your
configuration to collect metrics via JMX.

See: https://telegraf-kafka.readthedocs.io/en/latest/implementation.html

106 Chapter 4. Versioniong and build history:

https://telegraf-kafka.readthedocs.io/en/latest/implementation.html
https://telegraf-kafka.readthedocs.io/en/latest/implementation.html
https://telegraf-kafka.readthedocs.io/en/latest/implementation.html
https://telegraf-kafka.readthedocs.io/en/latest/implementation.html

telegraf-kafka Documentation, Release 1

• change: Zookeeper metric collection switches from Telegraf plugin to JMX collection via Jolokia Telegraf input

• fix: Topic entity dashboard should break by topic rather than per broker, fix aggregation when any selected

• fix: Burrow does not show up in Overview page

• fix: Telegraf configuration helper UI is broken, and update for Zookeeper collection

• fix: appinspect warnings

• fix: Increase time range of searches in Overview page to better cover longer time between measures

Version 1.1.32

CAUTION: Zookeeper metric collection switches from Telegraf plugin to JMX for easier and more consistent metric
collection across all the components. If you were using the application prior to this version, please update your
configuration to collect metrics via JMX.

See: https://telegraf-kafka.readthedocs.io/en/latest/implementation.html

• change: Zookeeper metric collection switches from Telegraf plugin to JMX collection via Jolokia Telegraf input

• fix: Topic entity dashboard should break by topic rather than per broker, fix aggregation when any selected

• fix: Burrow does not show up in Overview page

• fix: Telegraf configuration helper UI is broken, and update for Zookeeper collection

• fix: appinspect warnings

Version 1.1.31

CAUTION: Zookeeper metric collection switches from Telegraf plugin to JMX for easier and more consistent metric
collection across all the components. If you were using the application prior to this version, please update your
configuration to collect metrics via JMX.

See: https://telegraf-kafka.readthedocs.io/en/latest/implementation.html

• change: Zookeeper metric collection switches from Telegraf plugin to JMX collection via Jolokia Telegraf input

• fix: Topic entity dashboard should break by topic rather than per broker, fix aggregation when any selected

• fix: Burrow does not show up in Overview page

• fix: Telegraf configuration helper UI is broken, and update for Zookeeper collection

Version 1.1.30

• fix: Realtime traffic In and Out refer to the same field in Overview for Kafka Brokers

Version 1.1.29

• fix: Realtime traffic In and Out refer to the same field in Kafka broker entity view

Version 1.1.28

• feature: Improvement of the maintenance mode with start date time selection capability and automatic schedul-
ing

4.1. Release notes 107

https://telegraf-kafka.readthedocs.io/en/latest/implementation.html
https://telegraf-kafka.readthedocs.io/en/latest/implementation.html

telegraf-kafka Documentation, Release 1

Version 1.1.27

• fix: Drilldown link broken for Kafka Broker view from dynamic Brokers overview in main Overview dash-
boards, or Kafka Brokers dashboard (change introduced in 1.1.26)

Version 1.1.26

• fix: The total number of Kafka Connect connectors reported in Alerting management UI is incorrect if connec-
tors have the same ID across multiple tenants

• fix: Cleaning / deletion of unused css and js objects

• feature: Improved table icons rendering with courtesy of Chrys Younger

• feature: Improved Broker overview panels in Overview and Brokers views

Version 1.1.25

• fix: Regression introduced in version 1.1.21 impacts the Kafka Connect tasks inventory if a task is inactive or
removed for a long period

• fix: Incorrect number of connectors reported in Alerting managing interface if connectors have the same names
across environments

Version 1.1.24

• feature: Introducing logs mapping macros used in entity views to provide customization capabilities for logs
integration

Version 1.1.23

• fix: Missing env/label filters in entity views impact results if multiple env/label and ANY selected

Version 1.1.22

• fix: Improves searches for Connected experience dashboard for Kafka Connect (listing connectors in alert)

• fix: Improves Telegraf configuration generator modal window rendering and adds link button to documentation

• fix: Missing env / label filtering in show tasks in alert button from Overview

• feature: Add dynamic view inclusion in menu for Connected Experience custom dashboards

Version 1.1.21

• feature: Introduction of the Telegraf configuration generator, a guided user interface that generates the tele-
graf.conf configuration files depending on your requirements

• feature: Adding new Audit menu with builtin Audit dashboard for scheduled performance and daily volume
indexing analysis

• feature: Use bootstrap buttons in Overview rather than custom buttons design

• feature: Adding active button in Overview to show Kafka Connect tasks in alert (tasks not reporting)

108 Chapter 4. Versioniong and build history:

telegraf-kafka Documentation, Release 1

• feature: Adding drilldown from single in Overview / Kafka Connect health views for failed connectors / failed
tasks

• feature: Store the last operational time of Kafka Connect connectors in the KVstore, update at inventory / alert
run time, return when an alert triggers

• fix: Lag field missing in table from Splunk Connected experience Burrow dashboard due to typo

Version 1.1.20

• fix: Remove any console.log (even while these are commented) in javascript to avoid manual check from appin-
spect

Version 1.1.19

• fix: Static index reference in new Splunk Connected experience Kafka Connect dashboard

• fix: lag field name type in new Splunk Connected experience Burrow dashboard

• fix: Remove restart required after installation to allow installation in Splunk Cloud via Self-services (SSAI)

• feature: Adding Splunk Connected experience mobile dashboard for Zookeeper health

Version 1.1.18

• feature: Introduction of the builtin kafka_admin role

• feature: Provides default kafka_admin role member write access to the application name space and the KVstore
based lookup collections

• feature: Introduction of the Connected Experience dashboards, Health overview dashboards designed to be used
with Splunk Connected Experience and Splunk Cloud Gateway (Splunk Mobile, Splunk TV)

• fix: Static indexes references in Kafka Connect and Kafka Burrow dashboards

Version 1.1.17

• fix: Expose units for Zookeeper latency metrics in Overview and entity view

• feature: Introducing the smart component enablement, which allows enabling / disabling a Kafka component to
be visible from the Overview, to be managed via the configuration user interface

• feature: Expose Zookeeper leader and Broker active controller in Overview dashboard when mono tenancy
(environment) detected or selected

• feature: Configuration checker, detect incomplete installation (Kafka inventory not updated) when loading
Overview, and provide modal update user interaction

• fix: Prevents multiple endpoint calls in Alerting User Interface management in Ajax

Version 1.1.16

• feature: Spinner during update / rebuild of KVstore collections within the management of embedded alerting UI

• feature: Manage unprivileged user access to the UI, and proper error handling due to lack of permission against
the KVstore collections

4.1. Release notes 109

telegraf-kafka Documentation, Release 1

• fix: Improved handling of topics / connectors / consumers discovery reports

• feature: Kafka Brokers OOTB alerts and Kafka Connect connector or task startup failure detected are not linked
to a monitoring_state that can be deactivated via the KVstore collections

• feature: Configuration error checker which verifies at overview loading page for unsupported tags in env/label
such as white spaces.

Version 1.1.15

• feature: Major improvements of the user experience with the management of embedded alerting via modal
contextual user interactions

• feature: Maintenance mode is now time conditioned with an end of maintenance period requested via UI calen-
dar during activation

• feature: Migration to native modal windows for user interactions in the alerting management user interface
(removal of bootbox js plugin)

• feature: Default schedule change of the maintenance mode status verification report

• feature: Request Splunk restart by default in app.conf

• fix: Kafka Connect tasks that are paused do not properly affect the aggregated state single form in Overview

• fix: Burrow task single form in Overview page results in appendcols related error in Overview page within
Splunk 7.0.x

• fix: Regression in Kafka Connect task listing for Splunk 7.0.x in PostProcess search due to append (introduced
by Alerting Management UI)

• fix: Regression in dynamic table overview for Kafka Connect status per task in Overview (introduced by 1.1.14)

Version 1.1.14

• feature: Major improvements of the user experience with the management of embedded alerting via modal
contextual user interactions

• feature: Maintenance mode is now time conditioned with an end of maintenance period requested via UI calen-
dar during activation

• feature: Migration to native modal windows for user interactions in the alerting management user interface
(removal of bootbox js plugin)

• feature: Default schedule change of the maintenance mode status verification report

• feature: Request Splunk restart by default in app.conf

• fix: Kafka Connect tasks that are paused do not properly affect the aggregated state single form in Overview

• fix: Add Kafka Connect tasks in the dynamic table tasks overview if the tasks are listed as monitored in the
collection, and the tasks do not report metrics currently (collection stopped, tasks were removed but not from
collection)

• fix: Burrow task single form in Overview page results in appendcols related error in Overview page within
Splunk 7.0.x

110 Chapter 4. Versioniong and build history:

telegraf-kafka Documentation, Release 1

Version 1.1.13

• fix: Static span is defined in Burrow detailed view charts

• fix: Prevents removed Burrow consumers to appear as low range when latest metrics available are part of the
selected time range

• fix: Missing group by statement for Burrow consumers monitoring in OOTB alert, generates unexpected output
containing OK consumers, while alerts are correctly justified for ERR consumers

4.1.3 Version 1.1.12

• feature: Adding drilldown to single forms for Offline and Under-replicated partitions in Overview and Kafka
Brokers entities views

• fix: ISR Shrinking missing env/label/broker filters in Kafka broker entity view

• feature: Better table rendering in Kafka broker entity view for Under-replicated partitions

4.1.4 Version 1.1.11

• feature: Improvement of the Alerting framework management interface with tabs categorization, capability to
update and reset collections on demand, alert activation summary, UI experience greatly improved

• fix: Prevent low range state for Kafka Connect tasks that were recently deleted in tasks overview

• fix: Improve Kafka Connect tasks table in Kafka Connect entity view

• fix: Pastel red color for under-replicated partitions in topics views

• fix: Properly order per topic/partitions in broker entity table view

• fix: Prevents a failing component that was unreachable for a long period to be entirely removed from the
infrastructure collection, replaced by a disabled_autoforced monitoring_state value if downtime>24 hours

• fix: Preserve _key_id of KVstore collections during updates for kafka_infra_inventory /
kafka_infra_nodes_inventory lookups

4.1.5 Version 1.1.10

• fix: Static index references instead of macro usage in Kafka Connect entity view, Kafka Connect status report
and drilldown links

• fix: Switch to dopdown selector for env/label in Overview to avoid multiselect issues with forwarding tokens to
dashboards

4.1.6 Version 1.1.9

• fix: Static index reference instead of macro usage in Kafka Connect report

4.1.7 Version 1.1.8

• feature: Improvements of the Kafka Connect task status overview report

• feature: Add icon ranges and filters for Kafka Connect task status overview from Overview main dashboard,
configure drilldown from table to entity views

4.1. Release notes 111

telegraf-kafka Documentation, Release 1

4.1.8 Version 1.1.7

• feature: Add input text filter for Consumers in UI Monitoring management

• fix: Non working filters for Consumers / partitions in UI Burrow

• feature: Map monitoring_state in Consumers status preview in Overview

4.1.9 Version 1.1.6

• fix: incompatibility for ksql-server with latest Confluent release (5.1.x) due to metric name changes in JMX
model

• feature: avoid no results returned by single in Overview page for Burrow when no consumers are yet added to
the monitored collection

4.1.10 Version 1.1.5

Burrow integration: Kafka Consumer Lag monitoring

• feature: Integration of Burrow, new Burrow consumer lag monitoring UIs

• feature: Management of Kafka consumers state within the alerting framework

• feature: Integration of Burrow consumers state within the Overview UI

• feature: Schedule Kvstore collection update reports (infra, topics, tasks, consumers) on a per 4 hours basis

• fix: Prevents user from attempting to disable maintenance mode when already disabled, and vice-versa

• fix: Properly sort Connect tasks statuses on Overview page to show Unknown status when tasks are missing but
monitored

The Burrow integration provides advanced threshold less lag monitoring for Kafka Consumers, such as Kafka Connect
connectors and Kafka Streams.

4.1.11 Version 1.1.4

Burrow integration: Kafka Consumer Lag monitoring

• feature: Integration of Burrow, new Burrow consumer lag monitoring UIs

• feature: Management of Kafka consumers state within the alerting framework

• feature: Integration of Burrow consumers state within the Overview UI

• feature: Schedule Kvstore collection update reports (infra, topics, tasks, consumers) on a per 4 hours basis

• fix: Prevents user from attempting to disable maintenance mode when already disabled, and vice-versa

The Burrow integration provides advanced threshold less lag monitoring for Kafka Consumers, such as Kafka Connect
connectors and Kafka Streams.

4.1.12 Version 1.1.3

• fix: Properly order partitions in new Brokers detailed UI

• fix: Allows selection of special topics in entity topic view

112 Chapter 4. Versioniong and build history:

telegraf-kafka Documentation, Release 1

4.1.13 Version 1.1.2

• feature: New Brokers/Brokers details, Topics/Topics details UIs inspired from Yahoo kafka-manager

• feature: Allows environment and label selection from Overview, propagates tokens across all UIs

• fix: Incorrect number of partitions reported within Brokers entity view when multiple Brokers are selected

4.1.14 Version 1.1.1

• fix: Static index called in report Kafka monitoring - tasks status report

4.1.15 Version 1.1.0

CAUTION: Breaking changes, telegraf modification is required to provide global tags for env and label dimen-
sions!

https://da-itsi-telegraf-kafka.readthedocs.io/en/latest/kafka_monitoring.html#telegraf-output-configuration

Upgrade path:

• Upgrade telegraf configuration to provide the env and label tags

• Upgrade the application

Features/fixes:

• feature: Multi-environment / Multi-dc support via env and label tagging at Telegraf metric level, allows embed-
ded management of any number of environment and/or additional sub-dividing notion (multi-env, multi-dc. . .)

• feature: New kvstore collection to allow monitoring of services in a container environment philosophy based on
the number of active nodes per role rather than their identity

• feature: Update of the Alerting Management User Interface

• feature: New OOTB Alerting based on active nodes numbers per role

• feature: Refreshed Overview page with layers icons, additional overview in page views

• feature: New applications icons

• fix: Various fixes and improvements

4.1.16 Version 1.0.12

• fix: Improve detection of Kafka Connect tasks not successfully running on the Overview page

• fix: Drilldown on single forms for Kafka Connect tasks

4.1.17 Version 1.0.11

• fix: Management interface toggle panels not working (bad reference in js)

• fix: Management interface disable maintenance button not showing up properly in Splunk 7.0.x

• fix: Preset a default value for maintenance mode status

• fix: share lookups, transforms and macros at system level by default

4.1. Release notes 113

https://da-itsi-telegraf-kafka.readthedocs.io/en/latest/kafka_monitoring.html#telegraf-output-configuration

telegraf-kafka Documentation, Release 1

4.1.18 Version 1.0.10

• Unpublished

4.1.19 Version 1.0.9

• feature: Added OOTB Alert for under-replicated partitions per topics

• feature: Management interface for embedded Kafka alerting

• feature: Enabling / Deactivating maintenance mode through UI for alerting management

4.1.20 Version 1.0.8

• feature: Out of the box alerting templates for Kafka infrastructure

• fix: Kafka Connect aggregated states issues in Overview page

4.1.21 Version 1.0.7

• feature: Out of the box alerts for Kafka Infrastructure

• feature: Support for Confluent ksql-server

• feature: Support for Confluent kafka-rest

• feature: Overview home page improvements

• feature: event logging integration with the TA-kafka-streaming-platform

• fix: minor fixes and improvements in views

4.1.22 Version 1.0.6

• fix: Typo in Overview

4.1.23 Version 1.0.5

• feature: Confluent schema-registry support

4.1.24 Version 1.0.4

• fix: inverted filters for source/task in Overview

• fix: dropdown replaced by multiselect and key per connector/task in source/sink views

4.1.25 Version 1.0.3

• fix: Overview page, link for topic management should be under brokers category

114 Chapter 4. Versioniong and build history:

telegraf-kafka Documentation, Release 1

4.1.26 Version 1.0.2

• various: logo update

4.1.27 Version 1.0.1

• fix: missing link for Kafka topics reporting

4.1.28 Version 1.0.0

• initial and first public release

4.1. Release notes 115

	Overview:
	About
	Compatibility
	Known Issues
	Support & donate
	Download

	Deployment and configuration:
	Deployment & Upgrades
	Implementation & data collection
	Docker testing templates
	Splunk dashboards (health views)
	Splunk Connected experience for Cloud Gateway
	Kafka infrastructure OOTB alerting

	Troubleshoot:
	Troubleshoot & FAQ

	Versioniong and build history:
	Release notes

